1
|
Stea SG, Grisel JE. β-Endorphin influences sedative and ataxic effects of alcohol. Alcohol 2024; 115:69-77. [PMID: 37741556 DOI: 10.1016/j.alcohol.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Beta-endorphin (β-E) is an opioid peptide linked to the behavioral effects of ethanol. For example, β-E provides negative feedback to inhibit the hypothalamic-pituitary-adrenal (HPA) stress axis, and neuroadaptation of this system to ethanol may facilitate sex differences in disordered drinking. Locomotor sensitivity to ethanol may also influence the risk for addiction; however, the role of β-E in psychomotor effects of ethanol is not fully understood. We examined the role of β-E and sex on locomotor effects of ethanol using adult male and female wild-type C57BL/6J and β-E deficient B6.129S2-Pomctm1Low/J mice in a parallel rod floor apparatus following 0.75 or 2.0 g/kg ethanol. Beginning 15 min after intraperitoneal injection, we recorded foot slips, distance traveled, slips per meter, first instance of immobility, and total time spent off-balance (lying on the floor) over 15 min, and collected blood for analysis of ethanol concentration 60 min after injection. Overall, β-E deficient mice were more sedated and ataxic following ethanol; at the lower dose they slipped more frequently and had a higher rate of slips per meter traveled. At the higher dose, β-E deficient mice were predominantly sedated, slipping less frequently, and traveling less, as well as spending more time off-balance and becoming immobile sooner. Genotype interacted with sex in that male β-E deficient mice slipped more frequently than their female counterparts, suggesting that β-E may elicit sex-dependent effects of ethanol-induced ataxia. Blood ethanol concentration did not differ between any group, suggesting that behavioral differences result from altered sensitivity to ethanol. Our data support the contention that β-E modulates the locomotor effects of ethanol and may influence ataxia in a sex-dependent manner. These findings help elucidate the role of β-E in diverging behavioral responses to ethanol and may aid the development of targeted treatments for alcohol use disorders.
Collapse
Affiliation(s)
- Samuel G Stea
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States
| | - Judith E Grisel
- Department of Psychology & Neuroscience Program, Bucknell University, Lewisburg, PA 17837, United States.
| |
Collapse
|
2
|
Experimental alcoholism primes structural and functional impairment of the glymphatic pathway. Brain Behav Immun 2020; 85:106-119. [PMID: 31247290 DOI: 10.1016/j.bbi.2019.06.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/08/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022] Open
Abstract
Alcoholism is a risk factor for the development of cognitive decline and dementia. Here we demonstrated that the glymphatic function in the brain was impaired by alcohol administration. Acute moderate alcohol administration substantially retarded and reduced the entry of subarachnoid cerebrospinal fluid (CSF) via the paravascular space into the cerebral parenchyma, thus impaired CSF-interstitial fluid (ISF) exchange and parenchymal amyloid β (Aβ) peptide clearance. The elevated release of β-endorphin and reduced cerebrovascular pulsatility after acute alcohol administration may account for the impairment of the glymphatic function. Chronic moderate alcohol consumption led to pronounced activation of astrocytes and a widespread loss of perivascular AQP4 polarization in the brain, which results in an irreversible impairment of the glymphatic function. The results of the study suggest that impaired glymphatic functions and reduced parenchymal Aβ clearance found in both acute and chronic alcohol treatment may contribute to the development of cognitive decline and dementia in alcoholism.
Collapse
|
3
|
Mattalloni MS, Albrecht PA, Salinas-Luypaert C, Deza-Ponzio R, Quintanilla ME, Herrera-Marschitz M, Cancela LM, Rivera-Meza M, Virgolini MB. Silencing brain catalase expression reduces ethanol intake in developmentally-lead-exposed rats. Neurotoxicology 2019; 70:180-186. [DOI: 10.1016/j.neuro.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
|
4
|
El-Mas MM, Abdel-Rahman AA. Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:1-33. [PMID: 31368095 PMCID: PMC8034813 DOI: 10.1007/978-981-13-6260-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
5
|
Yao F, Abdel-Rahman AA. Combined Catalase and ADH Inhibition Ameliorates Ethanol-Induced Myocardial Dysfunction Despite Causing Oxidative Stress in Conscious Female Rats. Alcohol Clin Exp Res 2017; 41:1541-1550. [PMID: 28667748 DOI: 10.1111/acer.13442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/24/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Ethanol (EtOH)-evoked oxidative stress, which contributes to myocardial dysfunction in proestrus rats, is mediated by increases in NADPH oxidase (Nox) activity, malondialdehyde (MDA), and ERK1/2 phosphorylation. Whether these biochemical responses, which are triggered by alcohol-derived acetaldehyde in noncardiac tissues, occur in proestrus rats' hearts remains unknown. Therefore, we elucidated the roles of alcohol dehydrogenase (ADH), cytochrome P4502E1 (CYP2E1), and catalase, which catalyze alcohol oxidation to acetaldehyde, in these alcohol-evoked biochemical and hemodynamic responses in proestrus rats. METHODS Conscious proestrus rats prepared for measurements of left ventricular (LV) function and blood pressure (BP) received EtOH (1.5 g/kg, intravenous [i.v.] infusion over 30 minutes) or saline 30 minutes after an ADH and CYP2E1 inhibitor, 4-methylpyrazole (4-MP) (82 mg/kg, intraperitoneal), a catalase inhibitor, 3-AT (0.5 g/kg, i.v.), their combination, or vehicle. LV function and BP were monitored for additional 60 minutes after EtOH or saline infusion before collecting the hearts for ex vivo measurements of LV reactive oxygen species (ROS), Nox activity, MDA, and ERK1/2 phosphorylation. RESULTS EtOH reduced LV function (dP/dtmax and LV developed pressure) and BP, and increased cardiac Nox activity, ROS and MDA levels, and ERK1/2 phosphorylation. Either inhibitor partially, and their combination significantly, attenuated these responses despite the substantially higher blood EtOH level, and the increased cardiac oxidative stress and reduced BP caused by 3-AT alone or with 4-MP. The inhibitors reduced cardiac MDA level and reversed EtOH effect on cardiac and plasma MDA. CONCLUSIONS EtOH oxidative metabolism plays a pivotal role in the EtOH-evoked LV oxidative stress and dysfunction in proestrus rats. Notably, catalase inhibition (3-AT) caused cardiac oxidative stress and hypotension.
Collapse
Affiliation(s)
- Fanrong Yao
- Department of Pharmacology & Toxicology (FY, AAA-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Abdel A Abdel-Rahman
- Department of Pharmacology & Toxicology (FY, AAA-R), Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
6
|
Peana AT, Sánchez-Catalán MJ, Hipólito L, Rosas M, Porru S, Bennardini F, Romualdi P, Caputi FF, Candeletti S, Polache A, Granero L, Acquas E. Mystic Acetaldehyde: The Never-Ending Story on Alcoholism. Front Behav Neurosci 2017; 11:81. [PMID: 28553209 PMCID: PMC5425597 DOI: 10.3389/fnbeh.2017.00081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
Collapse
Affiliation(s)
| | - María J. Sánchez-Catalán
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Lucia Hipólito
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Michela Rosas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | - Simona Porru
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
| | | | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Francesca F. Caputi
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, University of BolognaBologna, Italy
| | - Ana Polache
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Luis Granero
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of ValenciaValència, Spain
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of CagliariCagliari, Italy
- Centre of Excellence on Neurobiology of Addiction, University of CagliariCagliari, Italy
| |
Collapse
|
7
|
Estrogen modulation of the ethanol-evoked myocardial oxidative stress and dysfunction via DAPK3/Akt/ERK activation in male rats. Toxicol Appl Pharmacol 2015; 287:284-92. [PMID: 26111663 DOI: 10.1016/j.taap.2015.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/08/2015] [Accepted: 06/20/2015] [Indexed: 11/22/2022]
Abstract
Evidence suggests that male rats are protected against the hypotensive and myocardial depressant effects of ethanol compared with females. We investigated whether E2 modifies the myocardial and oxidative effects of ethanol in male rats. Conscious male rats received ethanol (0.5, 1 or 1.5g/kg i.v.) 30-min after E2 (1μg/kg i.v.) or its vehicle (saline), and hearts were collected at the conclusion of hemodynamic measurements for ex vivo molecular studies. Ethanol had no effect in vehicle-treated rats, but it caused dose-related reductions in LV developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of rise in LV pressure (dP/dtmax) and systolic (SBP) and diastolic (DBP) blood pressures in E2-pretreated rats. These effects were associated with elevated (i) indices of reactive oxygen species (ROS), (ii) malondialdehyde (MDA) protein adducts, and (iii) phosphorylated death-associated protein kinase-3 (DAPK3), Akt, and extracellular signal-regulated kinases (ERK1/2). Enhanced myocardial anti-oxidant enzymes (heme oxygenase-1, catalase and aldehyde dehydrogenase 2) activities were also demonstrated. In conclusion, E2 promotes ethanol-evoked myocardial oxidative stress and dysfunction in male rats. The present findings highlight the risk of developing myocardial dysfunction in men who consume alcohol while receiving E2 for specific medical conditions.
Collapse
|
8
|
Melis M, Carboni E, Caboni P, Acquas E. Key role of salsolinol in ethanol actions on dopamine neuronal activity of the posterior ventral tegmental area. Addict Biol 2015; 20:182-93. [PMID: 24103023 DOI: 10.1111/adb.12097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ethanol excites dopamine (DA) neurons in the posterior ventral tegmental area (pVTA). This effect is responsible for ethanol's motivational properties and may contribute to alcoholism. Evidence indicates that catalase-mediated conversion of ethanol into acetaldehyde in pVTA plays a critical role in this effect. Acetaldehyde, in the presence of DA, condensates with it to generate salsolinol. Salsolinol, when administered in pVTA, excites pVTA DA cells, elicits DA transmission in nucleus accumbens and sustains its self-administration in pVTA. Here we show, by using ex vivo electrophysiology, that ethanol and acetaldehyde, but not salsolinol, failed to stimulate pVTA DA cell activity in mice administered α-methyl-p-tyrosine, a DA biosynthesis inhibitor that reduces somatodendritic DA release. This effect was specific for ethanol and acetaldehyde since morphine, similarly to salsolinol, was able to excite pVTA DA cells in α-methyl-p-tyrosine-treated mice. However, when DA was bath applied in slices from α-methyl-p-tyrosine-treated mice, ethanol-induced excitation of pVTA DA neurons was restored. This effect requires ethanol oxidation into acetaldehyde given that, when H2 O2 -catalase system was impaired by either 3-amino-1,2,4-triazole or in vivo administration of α-lipoic acid, ethanol did not enhance DA cell activity. Finally, high performance liquid chromatography-tandem mass spectrometry analysis of bath medium detected salsolinol only after co-application of ethanol and DA in α-methyl-p-tyrosine-treated mice. These results demonstrate the relationship between ethanol and salsolinol effects on pVTA DA neurons, help to untangle the mechanism(s) of action of ethanol in this area and contribute to an exciting research avenue prosperous of theoretical and practical consequences.
Collapse
Affiliation(s)
- Miriam Melis
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Ezio Carboni
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
- Centre of Excellence on Neurobiology of Addiction; University of Cagliari; Cagliari Italy
- INN-National Institute of Neuroscience; University of Cagliari; Cagliari Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences; University of Cagliari; Cagliari Italy
- Centre of Excellence on Neurobiology of Addiction; University of Cagliari; Cagliari Italy
- INN-National Institute of Neuroscience; University of Cagliari; Cagliari Italy
| |
Collapse
|
9
|
El-Mas MM, Abdel-Rahman AA. Ser/thr phosphatases tonically attenuate the ERK-dependent pressor effect of ethanol in the rostral ventrolateral medulla in normotensive rats. Brain Res 2014; 1577:21-8. [PMID: 24978604 DOI: 10.1016/j.brainres.2014.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/14/2014] [Accepted: 06/21/2014] [Indexed: 11/16/2022]
Abstract
We recently reported that microinjection of ethanol into the rostral ventrolateral medulla (RVLM) elicits modest increases in local extracellular signal-regulated kinase (ERK) and blood pressure (BP) in conscious normotensive rats. In this study, we tested the hypothesis that RVLM ser/thr phosphatases dampen the ERK-dependent pressor effect of ethanol in normotensive rats. We show that the pressor response elicited by intra-RVLM ethanol (10 μg) was (i) abolished following local ERK inhibition with PD98059 (1 μg) and (ii) associated with significant reduction in local phosphatase activity. Inhibition of the RVLM ser/thr phosphatase activity by okadaic acid (OKA, 0.4 μg) or fostriecin (15 pg) caused significant increases in blood pressure (BP) and potentiated the magnitude and duration of the pressor response as well as the phosphatase inhibition elicited by subsequent intra-RVLM administration of ethanol. Intra-RVLM acetaldehyde (2 μg), the main metabolic product of ethanol, caused no changes in BP or RVLM phosphatase activity but it produced significant increases in BP and inhibition of local phosphatase activity in rats treated with OKA or fostriecin. Together, the RVLM phosphatase activity acts tonically to attenuate the ERK-dependent pressor effect of ethanol or acetaldehyde in normotensive rats.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
10
|
Orrico A, Martí-Prats L, Cano-Cebrián MJ, Granero L, Polache A, Zornoza T. Improved effect of the combination naltrexone/D-penicillamine in the prevention of alcohol relapse-like drinking in rats. J Psychopharmacol 2014; 28:76-81. [PMID: 24306132 DOI: 10.1177/0269881113515063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Opioid antagonists are licensed drugs for treating alcohol use disorders; nonetheless, clinical studies have evidenced their limited effectiveness. Preclinical findings indicate that opioid receptor (OR) antagonists, such as naltrexone (NTX), reduce the alcohol deprivation effect (ADE). However, a detailed analysis of published data shows the existence of a delayed increase in ethanol consumption after continuous OR blockade, a phenomenon originally called as 'delayed ADE'. We have recently reported that D-penicillamine (DP) is able to prevent ADE through a mechanism dependent on the inactivation of acetaldehyde, the main metabolite of ethanol. Hypothetically, OR activation would be triggered by acetaldehyde after ethanol consumption. Hence, we conjecture that the combination of NTX and DP, due to their distinct but complementary mechanisms to impede OR activation, may be more efficacious in the prevention of the ADE and, specifically, the 'delayed ADE'. Herein, we compare the effects of the combination NTX/DP (NTX: 2×5 mg/kg SC injection daily/DP: SC infusion (0.25 mg/h)) versus NTX on the ADE in long-term ethanol-experienced rats. As expected, NTX-treated animals displayed a delayed ADE. However, NTX/DP treatment prevented this delayed effect. Our present data indicate that this combination therapy shows an adequate anti-relapse preclinical efficacy being able to overcome the preclinical limitations of NTX alone.
Collapse
Affiliation(s)
- Alejandro Orrico
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Burjassot, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Deehan GA, Hauser SR, Wilden JA, Truitt WA, Rodd ZA. Elucidating the biological basis for the reinforcing actions of alcohol in the mesolimbic dopamine system: the role of active metabolites of alcohol. Front Behav Neurosci 2013; 7:104. [PMID: 23986666 PMCID: PMC3750600 DOI: 10.3389/fnbeh.2013.00104] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/27/2013] [Indexed: 11/13/2022] Open
Abstract
The development of successful pharmacotherapeutics for the treatment of alcoholism is predicated upon understanding the biological action of alcohol. A limitation of the alcohol research field has been examining the effects of alcohol only and ignoring the multiple biological active metabolites of alcohol. The concept that alcohol is a "pro-drug" is not new. Alcohol is readily metabolized to acetaldehyde within the brain. Acetaldehyde is a highly reactive compound that forms a number of condensation products, including salsolinol and iso-salsolinol (acetaldehyde and dopamine). Recent experiments have established that numerous metabolites of alcohol have direct CNS action, and could, in part or whole, mediate the reinforcing actions of alcohol within the mesolimbic dopamine system. The mesolimbic dopamine system originates in the ventral tegmental area (VTA) and projects to forebrain regions that include the nucleus accumbens (Acb) and the medial prefrontal cortex (mPFC) and is thought to be the neurocircuitry governing the rewarding properties of drugs of abuse. Within this neurocircuitry there is convincing evidence that; (1) biologically active metabolites of alcohol can directly or indirectly increase the activity of VTA dopamine neurons, (2) alcohol and alcohol metabolites are reinforcing within the mesolimbic dopamine system, (3) inhibiting the alcohol metabolic pathway inhibits the biological consequences of alcohol exposure, (4) alcohol consumption can be reduced by inhibiting/attenuating the alcohol metabolic pathway in the mesolimbic dopamine system, (5) alcohol metabolites can alter neurochemical levels within the mesolimbic dopamine system, and (6) alcohol interacts with alcohol metabolites to enhance the actions of both compounds. The data indicate that there is a positive relationship between alcohol and alcohol metabolites in regulating the biological consequences of consuming alcohol and the potential of alcohol use escalating to alcoholism.
Collapse
Affiliation(s)
- Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University, School of Medicine Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
12
|
Font L, Luján MÁ, Pastor R. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci 2013; 7:93. [PMID: 23914161 PMCID: PMC3728478 DOI: 10.3389/fnbeh.2013.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.
Collapse
Affiliation(s)
- Laura Font
- Area de Psicobiología, Universitat Jaume I Castellón, Spain
| | | | | |
Collapse
|
13
|
El-Mas MM, Fan M, Abdel-Rahman AA. Role of rostral ventrolateral medullary ERK/JNK/p38 MAPK signaling in the pressor effects of ethanol and its oxidative product acetaldehyde. Alcohol Clin Exp Res 2013; 37:1827-37. [PMID: 23905689 DOI: 10.1111/acer.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/29/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND We tested the hypothesis that alterations of the phosphorylation/dephosphorylation profile of mitogen-activated protein kinases (MAPKs) in the rostral ventrolateral medulla (RVLM) underlie the pressor response elicited by ethanol (EtOH) microinjection into the RVLM of spontaneously hypertensive rats (SHRs). The studies were extended to determine whether acetaldehyde (ACA), the primary oxidative product of EtOH, replicates the molecular effects of EtOH within the RVLM and the consequent pressor response. METHODS Effects of EtOH or ACA on blood pressure (BP) were evaluated in the absence or presence of selective JNK (SP600125), ERK (PD98059), p38 (SB203580), or ser/thr phosphatases (okadaic acid [OKA]) inhibitor. RESULTS Intra-RVLM EtOH (10 μg/rat) or ACA (2 μg/rat) caused a similar ERK2-dependent pressor response because EtOH or ACA-evoked increases in BP and in RVLM p-ERK2 level were abolished after pharmacologic inhibition of ERK phosphorylation. SP600125 abrogated the pressor action of EtOH, but not ACA, thus implicating JNK in EtOH action on BP. Despite EtOH enhancement of p38 phosphorylation, pharmacological studies argued against a causal role for this kinase in EtOH-evoked pressor response. RVLM phosphatase catalytic activity was not influenced by EtOH or ACA. Interestingly, pharmacologic phosphatase inhibition (OKA), which increased RVLM p-ERK2 and BP, abrogated the pressor effect of subsequently administered EtOH or ACA. CONCLUSIONS Enhancement of RVLM ERK2 phosphorylation constitutes a major molecular mechanism for the pressor response elicited by intra-RVLM EtOH or its metabolite, ACA, in conscious SHRs. Further, RVLM kinases dephosphorylation does not contribute to intra-RVLM EtOH- or ACA-evoked pressor response.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | |
Collapse
|
14
|
March SM, Abate P, Molina JC. Acetaldehyde involvement in ethanol's postabsortive effects during early ontogeny. Front Behav Neurosci 2013; 7:70. [PMID: 23801947 PMCID: PMC3685812 DOI: 10.3389/fnbeh.2013.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/01/2013] [Indexed: 11/29/2022] Open
Abstract
Clinical and biomedical studies sustains the notion that early ontogeny is a vulnerable window to the impact of alcohol. Experiences with the drug during these stages increase latter disposition to prefer, use or abuse ethanol. This period of enhanced sensitivity to ethanol is accompanied by a high rate of activity in the central catalase system, which metabolizes ethanol in the brain. Acetaldehyde (ACD), the first oxidation product of ethanol, has been found to share many neurobehavioral effects with the drug. Cumulative evidence supports this notion in models employing adults. Nevertheless very few studies have been conducted to analyze the role of ACD in ethanol postabsorptive effects, in newborns or infant rats. In this work we review recent experimental literature that syndicates ACD as a mediator agent of reinforcing aspects of ethanol, during early ontogenetic stages. We also show a meta-analytical correlational approach that proposes how differences in the activity of brain catalase across ontogeny, could be modulating patterns of ethanol consumption.
Collapse
Affiliation(s)
- Samanta M March
- Laboratorio de Alcohol, Ontogenia y Desarrollo, Instituto de Investigación Médica Mercedes y Martín Ferreyra Córdoba, Argentina ; Department de Psicología, Facultad de Psicología, Universidad Nacional de Córdoba Córdoba, Argentina
| | | | | |
Collapse
|
15
|
March SM, Culleré ME, Abate P, Hernández JI, Spear NE, Molina JC. Acetaldehyde reinforcement and motor reactivity in newborns with or without a prenatal history of alcohol exposure. Front Behav Neurosci 2013; 7:69. [PMID: 23785319 PMCID: PMC3683627 DOI: 10.3389/fnbeh.2013.00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/30/2013] [Indexed: 11/13/2022] Open
Abstract
Animal models have shown that early ontogeny seems to be a period of enhanced affinity to ethanol. Interestingly, the catalase system that transforms ethanol (EtOH) into acetaldehyde (ACD) in the brain, is more active in the perinatal rat compared to adults. ACD has been found to share EtOH's behavioral effects. The general purpose of the present study was to assess ACD motivational and motor effects in newborn rats as a function of prenatal exposure to EtOH. Experiment 1 evaluated if ACD (0.35 μmol) or EtOH (0.02 μmol) supported appetitive conditioning in newborn pups prenatally exposed to EtOH. Experiment 2 tested if prenatal alcohol exposure modulated neonatal susceptibility to ACD's motor effects (ACD dose: 0, 0.35 and 0.52 μmol). Experiment 1 showed that EtOH and ACD supported appetitive conditioning independently of prenatal treatments. In Experiment 2, latency to display motor activity was altered only in neonates prenatally treated with water and challenged with the highest ACD dose. Prenatal EtOH experience results in tolerance to ACD's motor activity effects. These results show early susceptibility to ACD's appetitive effects and attenuation of motor effects as a function of prenatal history with EtOH, within a stage in development where brain ACD production seems higher than later in life.
Collapse
Affiliation(s)
- Samanta M March
- Laboratorio de Alcohol, Ontogenia y Desarrollo, Instituto de Investigación Médica Mercedes y Martín Ferreyra Córdoba, Argentina ; Facultad de Psicología, Universidad Nacional de Córdoba, Cátedra Psicobiología Experimental Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
16
|
Segovia KN, Vontell R, López-Cruz L, Salamone JD, Correa M. c-Fos immunoreactivity in prefrontal, basal ganglia and limbic areas of the rat brain after central and peripheral administration of ethanol and its metabolite acetaldehyde. Front Behav Neurosci 2013; 7:48. [PMID: 23745109 PMCID: PMC3662884 DOI: 10.3389/fnbeh.2013.00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/05/2013] [Indexed: 11/13/2022] Open
Abstract
Considerable evidence indicates that the metabolite of ethanol (EtOH), acetaldehyde, is biologically active. Acetaldehyde can be formed from EtOH peripherally mainly by alcohol dehydrogenase (ADH), and also centrally by catalase. EtOH and acetaldehyde show differences in their behavioral effects depending upon the route of administration. In terms of their effects on motor activity and motivated behaviors, when administered peripherally acetaldehyde tends to be more potent than EtOH but shows very similar potency administered centrally. Since dopamine (DA) rich areas have an important role in regulating both motor activity and motivation, the present studies were undertaken to compare the effects of central (intraventricular, ICV) and peripheral (intraperitoneal, IP) administration of EtOH and acetaldehyde on a cellular marker of brain activity, c-Fos immunoreactivity, in DA innervated areas. Male Sprague-Dawley rats received an IP injection of vehicle, EtOH (0.5 or 2.5 g/kg) or acetaldehyde (0.1 or 0.5 g/kg) or an ICV injection of vehicle, EtOH or acetaldehyde (2.8 or 14.0 μmoles). IP administration of EtOH minimally induced c-Fos in some regions of the prefrontal cortex and basal ganglia, mainly at the low dose (0.5 g/kg), while IP acetaldehyde induced c-Fos in virtually all the structures studied at both doses. Acetaldehyde administered centrally increased c-Fos in all areas studied, a pattern that was very similar to EtOH. Thus, IP administered acetaldehyde was more efficacious than EtOH at inducing c-Fos expression. However, the general pattern of c-Fos induction promoted by ICV EtOH and acetaldehyde was similar. These results are consistent with the pattern observed in behavioral studies in which both substances produced the same magnitude of effect when injected centrally, and produced differences in potency after peripheral administration.
Collapse
|
17
|
March SM, Abate P, Spear NE, Molina JC. The role of acetaldehyde in ethanol reinforcement assessed by Pavlovian conditioning in newborn rats. Psychopharmacology (Berl) 2013. [PMID: 23196716 DOI: 10.1007/s00213-012-2920-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RATIONALE Animal studies indicate that central acetaldehyde, dependent on catalase metabolism of ethanol (EtOH), modulates ethanol reinforcement. Brain catalase activity and acetaldehyde (ACD) production are significantly higher in rat pups compare d with adults. Interestingly, infant rats show high EtOH affinity for alcohol consumption and are particularly sensitive to the drug's reinforcing effects. OBJECTIVES We tested whether central ACD is necessary and sufficient to induce appetitive conditioning in newborn rats through the artificial nipple technique. METHODS Vehicle, EtOH (100 mg%), and acetaldehyde (0.35 μmol) were administered into the cisterna magna (1 μl). Half of the animals also received a central administration of 75 μg (experiment 1) or 40 μg of D-penicillamine (experiment 2). Afterwards, pups were exposed to an olfactory cue (conditioned stimulus). One hour later, neonates were tested with an artificial nipple in the presence of the conditioned cue. Nipple attachment duration, mean grasp duration, and number of nipple disengagements served as dependent variables. RESULTS Positive responses to the scented nipple occurred in neonates conditioned with EtOH or ACD (experiments 1 and 2). In experiment 1, there were indications that D-penicillamine weakened the reinforcing effects of EtOH and ACD. In experiment 2, D-penicillamine (40 μg) significantly inhibited appetitive conditioned responses dependent upon EtOH or ACD. CONCLUSIONS Appetitive conditioning was observed when employing either central EtOH or ACD as unconditioned stimuli. Central abduction of ACD inhibited conditioned appetitive responsiveness to the surrogate nipple. Central ACD is involved in the determination or modulation of EtOH's motivational properties during early stages in development.
Collapse
Affiliation(s)
- Samanta M March
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), P.O. BOX 389, Friuli 2434, 5016 Córdoba, Argentina.
| | | | | | | |
Collapse
|
18
|
Dempsey S, Grisel JE. Locomotor sensitization to EtOH: contribution of β-Endorphin. Front Mol Neurosci 2012; 5:87. [PMID: 22952458 PMCID: PMC3430006 DOI: 10.3389/fnmol.2012.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 08/02/2012] [Indexed: 01/21/2023] Open
Abstract
Alcohol use disorders, like all drug addictions, involve a constellation of adaptive changes throughout the brain. Neural activity underlying changes in the rewarding properties of alcohol reflect changes in dopamine transmission in mesolimbic and nigrostriatal pathways and these effects are modulated by endogenous opioids such as β-Endorphin. In order to study the role of β-Endorphin in the development of locomotor sensitization to repeated EtOH exposure, we tested transgenic mice that vary in their capacity to synthesize this peptide as a result of constitutive modification of the Pomc gene. Our results indicate that mice deficient in β-Endorphin show attenuated locomotor activation following an acute injection of EtOH (2.0 g/kg) and, in contrast to wildtype mice, fail to demonstrate locomotor sensitization after 12 days of repeated EtOH injections. These data support the idea that β-Endorphin modulates the locomotor effects of EtOH and contributes to the neuroadaptive changes associated with chronic use.
Collapse
|
19
|
Ledesma JC, Font L, Aragon CMG. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice. Drug Alcohol Depend 2012; 124:42-9. [PMID: 22261181 DOI: 10.1016/j.drugalcdep.2011.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. METHODS Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). RESULTS Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. CONCLUSIONS Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol.
Collapse
Affiliation(s)
- Juan Carlos Ledesma
- Àrea de Psicobiologia, Universitat Jaume I, Avda Sos Baynat, 12071 Castellón, Spain
| | | | | |
Collapse
|
20
|
El-Mas MM, Abdel-Rahman AA. Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 302:H837-44. [PMID: 22159996 PMCID: PMC3353783 DOI: 10.1152/ajpheart.00958.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 μg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 μg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
21
|
Correa M, Salamone JD, Segovia KN, Pardo M, Longoni R, Spina L, Peana AT, Vinci S, Acquas E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci Biobehav Rev 2012; 36:404-30. [DOI: 10.1016/j.neubiorev.2011.07.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 07/14/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
22
|
Pastor R, Font L, Miquel M, Phillips TJ, Aragon CMG. Involvement of the beta-endorphin neurons of the hypothalamic arcuate nucleus in ethanol-induced place preference conditioning in mice. Alcohol Clin Exp Res 2011; 35:2019-29. [PMID: 22014186 PMCID: PMC4151392 DOI: 10.1111/j.1530-0277.2011.01553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. METHODS In this study, we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction, and reinstatement of ethanol (0 or 2 g/kg; intraperitoneally)-induced conditioned place preference (CPP). RESULTS Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. CONCLUSIONS The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain.
| | | | | | | | | |
Collapse
|
23
|
Martí-Prats L, Sánchez-Catalán MJ, Hipólito L, Orrico A, Zornoza T, Polache A, Granero L. Systemic administration of D-penicillamine prevents the locomotor activation after intra-VTA ethanol administration in rats. Neurosci Lett 2010; 483:143-7. [PMID: 20691754 DOI: 10.1016/j.neulet.2010.07.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
Although recently published studies seem to confirm the important role displayed by acetaldehyde (ACH), the main metabolite of ethanol, in the behavioral effects of ethanol, the origin of ACH is still a matter of debate. While some authors confer more importance to the central (brain metabolism) origin of ACH, others indicate that the hepatic origin could be more relevant. In this study we have addressed this topic using an experimental approach that combines local microinjections of ethanol into the ventral tegmental area (VTA) (which guarantees the brain origin of the ACH) to induce motor activation in rats together with systemic administration (i.p.) of several doses (0, 12.5, 25 and 50 mg/kg) of D-penicillamine (DP), a sequestering agent of ACH with contrasted efficiency to abolish the behavioral effects of the drug. Our results clearly show that DP prevented in a dose-dependent manner the motor activation induced by intra-VTA ethanol, being the 50 mg/kg dose the most efficient. DP per se did not affect the basal activity of the rats. In order to determine the specificity of the DP action, we also studied the effects of DP 50 mg/kg on the DAMGO-induced motor activation after the intra-VTA administration of this mu-opioid receptors agonist. DP did not significantly modify the motor activation induced by DAMGO thus confirming the specificity of the DP effects. Our results clearly suggest that the brain-derived ACH is necessary to manifest the activating effects resulting from ethanol administration.
Collapse
Affiliation(s)
- Lucía Martí-Prats
- Departament de Farmàcia i Tecnologia Farmacèutica, Universitat de València, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Agapito M, Mian N, Boyadjieva NI, Sarkar DK. Period 2 gene deletion abolishes beta-endorphin neuronal response to ethanol. Alcohol Clin Exp Res 2010; 34:1613-8. [PMID: 20586752 DOI: 10.1111/j.1530-0277.2010.01246.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Ethanol exposure during early life has been shown to permanently alter the circadian expression of clock regulatory genes and the beta-endorphin precursor proopiomelanocortin (POMC) gene in the hypothalamus. Ethanol also alters the stress- and immune-regulatory functions of beta-endorphin neurons in laboratory rodents. Our aim was to determine whether the circadian clock regulatory Per2 gene modulates the action of ethanol on beta-endorphin neurons in mice. METHODS Per2 mutant (mPer2(Brdml)) and wild type (C57BL/6J) mice were used to determine the effect of Per2 mutation on ethanol-regulated beta-endorphin neuronal activity during neonatal period using an in vitro mediobasal hypothalamic (MBH) cell culture model and an in vivo milk formula feeding animal model. The beta-endorphin neuronal activity following acute and chronic ethanol treatments was evaluated by measuring the peptide released from cultured cells or peptide levels in the MBH tissues, using enzyme-linked immunosorbent assay (ELISA). RESULTS Per2 mutant mice showed a higher basal level of beta-endorphin release from cultured MBH cells and a moderate increase in the peptide content in the MBH in comparison with control mice. However, unlike wild type mice, Per2 mutant mice showed no stimulatory or inhibitory beta-endorphin-secretory responses to acute and chronic ethanol challenges in vitro. Furthermore, Per2 mutant mice, but not wild type mice, failed to show the stimulatory and inhibitory responses of MBH beta-endorphin levels to acute and chronic ethanol challenges in vivo. CONCLUSIONS These results suggest for the first time that the Per2 gene may be critically involved in regulating beta-endorphin neuronal function. Furthermore, the data revealed an involvement of the Per2 gene in regulating beta-endorphin neuronal responses to ethanol.
Collapse
Affiliation(s)
- Maria Agapito
- Endocrine Program, Department of Animal Sciences, Graduate Program of Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
25
|
Kaur S, Ryabinin AE. Ghrelin receptor antagonism decreases alcohol consumption and activation of perioculomotor urocortin-containing neurons. Alcohol Clin Exp Res 2010; 34:1525-34. [PMID: 20586761 DOI: 10.1111/j.1530-0277.2010.01237.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current therapies for alcohol abuse disorders are not effective in all patients, and continued development of pharmacotherapies is needed. One approach that has generated recent interest is the antagonism of ghrelin receptors. Ghrelin is a gut-derived peptide important in energy homeostasis and regulation of hunger. Recent studies have implicated ghrelin in alcoholism, showing altered plasma ghrelin levels in alcoholic patients as well as reduced intakes of alcohol in ghrelin receptor knockout mice and in mice treated with ghrelin receptor antagonists. The aim of this study was to determine the neuroanatomical locus/loci of the effect of ghrelin receptor antagonism on alcohol consumption using the ghrelin receptor antagonist, D-Lys3-GHRP-6. METHODS In Experiment 1, male C57BL/6J mice were injected with saline 3 hours into the dark cycle and allowed access to 15% (v/v) ethanol or water for 2 hours in a 2-bottle choice experiment. On test day, the mice were injected with either saline or 400 nmol of the ghrelin receptor antagonist, D-Lys3-GHRP-6, and allowed to drink 15% ethanol or water for 4 hours. The preference for alcohol and alcohol intake were determined. In Experiment 2, the same procedure was followed as in Experiment 1 but mice were only allowed access to a single bottle of 20% ethanol (v/v), and alcohol intake was determined. Blood ethanol levels were analyzed, and immunohistochemistry for c-Fos was carried out to investigate changes in neural activity. To further elucidate the mechanism by which D-Lys3-GHRP-6 affects alcohol intake, in Experiment 3, the effect of D-Lys3-GHRP-6 on the neural activation induced by intraperitoneal ethanol was investigated. For the c-Fos studies, brain regions containing ghrelin receptors were analyzed, i.e. the perioculomotor urocortin population of neurons (pIIIu), the ventral tegmental area (VTA), and the arcuate nucleus (Arc). In Experiment 4, to test if blood ethanol concentrations were affected by D-Lys3-GHRP-6, blood samples were taken at 2 time-points after D-Lys3-GHRP-6 pretreatment and systemic ethanol administration. RESULTS In Experiment 1, D-Lys3-GHRP-6 reduced preference to alcohol and in a follow-up experiment (Experiment 2) also dramatically reduced alcohol intake when compared to saline-treated mice. The resulting blood ethanol concentrations were lower in mice treated with the ghrelin receptor antagonist. Immunohistochemistry for c-Fos showed fewer immunopositive cells in the pIIIu of the antagonist-treated mice but no difference was seen in the VTA or Arc. In Experiment 3, D-Lys3-GHRP-6 reduced the induction of c-Fos by intraperitoneal ethanol in the pIIIu but had no effect in the VTA. In the Arc, there was a significant increase in the number of c-Fos immunopositive cells after D-Lys3-GHRP-6 administration, but the antagonist had no effect on ethanol-induced expression of c-Fos. D-Lys3-GHRP-6-pretreatment also did not affect the blood ethanol concentrations observed after a systemic injection of ethanol when compared to saline-pretreated mice (Experiment 4). CONCLUSIONS These findings indicate that the action of ghrelin on the regulation of alcohol consumption may occur via the pIIIu.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Behavioral Neuroscience, School of Medicine, Oregon Heath and Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
26
|
Abstract
This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, United States.
| |
Collapse
|
27
|
Sánchez-Catalán MJ, Hipólito L, Zornoza T, Polache A, Granero L. Motor stimulant effects of ethanol and acetaldehyde injected into the posterior ventral tegmental area of rats: role of opioid receptors. Psychopharmacology (Berl) 2009; 204:641-53. [PMID: 19238363 DOI: 10.1007/s00213-009-1495-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE A recently published study has shown that microinjections of ethanol, or its metabolite, acetaldehyde into the substantia nigra pars reticulata, are able to produce behavioral activation in rats. Another brain site that could participate in such effects is the ventral tegmental area (VTA). OBJECTIVES We have investigated the locomotor-activating effects of local microinjections of ethanol and acetaldehyde into the posterior VTA of rats and the role of opioid receptors in such effects. MATERIALS Cannulae were placed into the posterior VTA to perform microinjections of ethanol (75 or 150 nmol) or acetaldehyde (25 or 250 nmol) in animals not previously microinjected or microinjected with either the nonselective opioid antagonist naltrexone (13.2 nmol) or the irreversible antagonist of the micro-opioid receptors beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 60 min. RESULTS Injections of ethanol or acetaldehyde into the VTA increased the locomotor activity of rats with maximal effects at doses of 150 nmol for ethanol and 250 nmol for acetaldehyde. These locomotor-activating effects were reduced by previously administering naltrexone (13.2 nmol) or beta-FNA (2.5 nmol) into the VTA. CONCLUSIONS The posterior VTA is another brain region involved in the locomotor activation after the intracerebroventricular administration of ethanol or acetaldehyde. Our data indicate that opioid receptors, particularly the micro-opioid receptors, could be the target of the actions of these compounds in the VTA. These results are consistent with the hypothesis that acetaldehyde could be a mediator of some ethanol effects.
Collapse
Affiliation(s)
- María José Sánchez-Catalán
- Departament de Farmàcia i Tecnología Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | | | | | |
Collapse
|
28
|
Pautassi RM, Nizhnikov ME, Spear NE. Assessing appetitive, aversive, and negative ethanol-mediated reinforcement through an immature rat model. Neurosci Biobehav Rev 2009; 33:953-74. [PMID: 19428502 PMCID: PMC2693872 DOI: 10.1016/j.neubiorev.2009.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/13/2009] [Accepted: 03/13/2009] [Indexed: 11/25/2022]
Abstract
The motivational effects of drugs play a key role during the transition from casual use to abuse and dependence. Ethanol reinforcement has been successfully studied through Pavlovian and operant conditioning in adult rats and mice genetically selected for their ready acceptance of ethanol. Another model for studying ethanol reinforcement is the immature (preweanling) rat, which consumes ethanol and exhibits the capacity to process tactile, odor and taste cues and transfer information between different sensorial modalities. This review describes the motivational effects of ethanol in preweanling, heterogeneous non-selected rats. Preweanlings exhibit ethanol-mediated conditioned taste avoidance and conditioned place aversion. Ethanol's appetitive effects, however, are evident when using first- and second-order conditioning and operant procedures. Ethanol also devalues the motivational representation of aversive stimuli, suggesting early negative reinforcement. It seems that preweanlings are highly sensitive not only to the aversive motivational effects of ethanol but also to its positive and negative (anti-anxiety) reinforcement potential. The review underscores the advantages of using a developing rat to evaluate alcohol's motivational effects.
Collapse
Affiliation(s)
- Ricardo M Pautassi
- Center for Development and Behavioral Neuroscience, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA.
| | | | | |
Collapse
|
29
|
Infusions of acetaldehyde into the arcuate nucleus of the hypothalamus induce motor activity in rats. Life Sci 2008; 84:321-7. [PMID: 19146861 DOI: 10.1016/j.lfs.2008.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/09/2008] [Accepted: 12/13/2008] [Indexed: 11/23/2022]
Abstract
AIMS The hypothalamic arcuate nucleus (ARH) is one of the brain regions with the highest levels of catalase expression. Acetaldehyde, metabolized from ethanol in the CNS through the actions of catalase, has a role in the behavioral effects observed after ethanol administration. In previous studies acetaldehyde injected in the lateral ventricles or in the substantia nigra reticulata (SNR) mimicked the behavioral stimulant effects of centrally administered ethanol. MAIN METHODS In the present study we assessed the effects of acetaldehyde administered either into the ARH into a dorsal control or into the third ventricle on locomotion and rearing observed in 30 min sessions in an open field. KEY FINDINGS Acetaldehyde injected into the ARH induced horizontal locomotion and rearing for 20 min. In contrast, administration of acetaldehyde into a control site dorsal to the ARH did not have any effect on locomotion. Although acetaldehyde administration into the third ventricle also induced locomotion, the time course for the effect in this area was different from the time course following ARH injections. Acetaldehyde in the ARH produced a long lasting induction of locomotion, while with intraventricular injections the effects disappeared after 5 min. SIGNIFICANCE The present results are consistent with previous studies demonstrating that acetaldehyde is an active metabolite of ethanol, which can have locomotor stimulant properties when administered in the ventricular system of the brain or into specific brain nuclei. Some brain nuclei rich in catalase (i.e.; SNR and ARH) could be mediating some of the locomotor stimulant effects of ethanol through its conversion to acetaldehyde.
Collapse
|