1
|
Gao R, Li Q, Qiu M, Xie S, Sun X, Huang T. Serum exosomal miR-192 serves as a potential detective biomarker for early pregnancy screening in sows. Anim Biosci 2023; 36:1336-1349. [PMID: 37170506 PMCID: PMC10472158 DOI: 10.5713/ab.22.0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The study was conducted to screen differentially expressed miRNAs in sows at early pregnancy by high-throughput sequencing and explore its mechanism of action on embryo implantation. METHODS The blood serum of pregnant and non-pregnant Landrace×Yorkshire sows were collected 14 days after artificial insemination, and exosomal miRNAs were purified for high throughput miRNA sequencing. The expression patterns of 10 differentially expressed (DE) miRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR quantified the abundance of serum exosomal miR-192 in pregnant and control sows, and the diagnostic power was assessed by receiver operating characteristic (ROC) analysis. The target genes of DE miRNAs were predicted with bioinformatics software, and the functional and pathway enrichment analysis was performed on gene ontology and the Kyoto encyclopedia of genes and genomes terms. Furthermore, a luciferase reporter system was used to identify the target relation between miR-192 and integrin alpha 4 (ITGA4), a gene influencing embryo implantation in pigs. Finally, the expression levels of miRNAs and the target gene ITGA4 were analyzed by qRT-PCR, and western blot, with the proliferation of BeWo cells detected by cell counting kit-8 (CCK-8). RESULTS A total of 221 known miRNAs were detected in the libraries of the pregnant and non-pregnant sows, of which 55 were up-regulated and 67 were down-regulated in the pregnant individuals compared with the non-pregnant controls. From these, the expression patterns of 10 DE miRNAs were validated. The qRT-PCR analysis further confirmed a significantly higher expression of miR-192 in the serum exosomes extracted from pregnant sows, when compared to controls. The ROC analysis revealed that miR-192 provided excellent diagnostic accuracy for pregnancy (area under the ROC curve [AUC] = 0.843; p>0.001). The dual-luciferase reporter assay indicated that miR-192 directly targeted ITGA4. The protein expression of ITGA4 was reduced in cells that overexpressed miR-192. Overexpression of miR-192 resulted in the decreased proliferation of BeWo cells and regulated the expression of cell cycle-related genes. CONCLUSION Serum exosomal miR-192 could serve as a potential biomarker for early pregnancy in pigs. miR-192 targeted ITGA4 gene directly, and miR-192 can regulate cellular proliferation.
Collapse
Affiliation(s)
- Ruonan Gao
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Qingchun Li
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Meiyu Qiu
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, 830000,
China
| | - Su Xie
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Key Laboratory of Animal Breeding and Reproduction of Minstry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070,
China
| | - Xiaomei Sun
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
| | - Tao Huang
- College of Animal Science and Technology, Shihezi University, 221 North Fourth Road, Shihezi 832000,
China
- Xinjiang Pig Breeding Engineering Technology Research Center, Xinjiang Tecon Husbandry S&T Co. Ltd, Changji, 831100,
China
| |
Collapse
|
2
|
He Y, Zhang Z, Yao T, Huang L, Gan J, Lv H, Chen J. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells relieves diabetic retinopathy through a microRNA-30c-5p-dependent mechanism. Diabetes Res Clin Pract 2022; 190:109861. [PMID: 35367521 DOI: 10.1016/j.diabres.2022.109861] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
AIMS Extracellular vesicle (EV)-transferred microRNAs (miRNAs) are proved to be potentially therapeutic candidates. Here, we attempted to unveil the role of delivery of miR-30c-5p by human umbilical cord mesenchymal stem cells (hUCMSCs)-derived EVs in diabetic retinopathy (DR). METHODS miR-30c-5p and PLCG1 expression in streptozotocin-induced diabetes mellitus (DM) rats and high glucose (HG)-treated human retinal endothelial cells (HRECs) was quantified, followed by analysis on their interaction. EVs were isolated from hUCMSCs and co-cultured with HRECs. Through gain- and loss-of-function assays, the role of hUCMSCs-derived EV containing miR-30c-5p in DR involving PLCG1 and NF-κB pathway was analyzed in vitro and in vivo. RESULTS Elevated PLCG1 was found in DM rats and HG-treated HRECs where miR-30c-5p was reduced while increased in hUCMSC-derived EVs. PLCG1 was pinpointed as a target gene of miR-30c-5p, which consequently disrupted the PKC/NF-κB pathway. hUCMSC-derived EVs decreased inflammation reaction by transferring miR-30c-5p in DM rats and HG-treated HRECs. Furthermore, similar changing tendency was observed in HG-treated HRECs induced by overexpressed miR-30c-5p through downregulation of PLCG1 in vivo. CONCLUSION Overall, our findings underlined delivery of miR-30c-5p by hUCMSC-derived EVs as a novel suppressor in the inflammatory response following DR.
Collapse
Affiliation(s)
- Yue He
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| | - Zhiru Zhang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Tianyu Yao
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Li Huang
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Jinhua Gan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China
| | - Jie Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, PR China.
| |
Collapse
|
3
|
Burgos CF, Cikutovic R, Alarcón M. MicroRNA expression in male infertility. Reprod Fertil Dev 2022; 34:805-818. [PMID: 35760398 DOI: 10.1071/rd21131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 05/25/2022] [Indexed: 11/23/2022] Open
Abstract
Male infertility is a multifactorial disorder that involves different physiopathological mechanisms and multiple genes. In this sense, we analyse the role of miRNAs in this pathology. Gene expression analysis can provide relevant information to detect biomarkers, signalling pathways, pathologic mechanisms, and potential therapeutic targets for the disease. In this review, we describe four miRNA microarrays related to patients who present infertility diseases, including azoospermia, asthenozoospermia, and oligoasthenozoospermic. We selected 13 miRNAs with altered expressions in testis tissue (hsa-miR-122-5p, hsa-miR-145-5p, hsa-miR-16-5p, hsa-miR-193a-3p, hsa-miR-19a-3p, hsa-miR-23a-3p, hsa-miR-30b-5p, hsa-miR-34b-5p, hsa-miR-34c-5p, hsa-miR-374b-5p, hsa-miR-449a, hsa-miR-574-3p and hsa-miR-92a-3p), and systematically examine the mechanisms of four relevant miRNAs (hsa-miR-16-5p, hsa-miR-19a-3p, hsa-miR-92a-3p and hsa-miR-30b-5p) which we found that regulated a large number of proteins. An interaction network was generated, and its connections allowed us to identify signalling pathways and interactions between proteins associated with male infertility. In this way, we confirm that the most affected and relevant pathway is the PI3K-Akt signalling.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Concepcion, Chile
| | - R Cikutovic
- Universidad de Talca, Talca, 360000 Maule, Chile
| | - M Alarcón
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| |
Collapse
|
4
|
Zeng Y, Du X, Yao X, Qiu Y, Jiang W, Shen J, Li L, Liu X. Mechanism of cell death of endothelial cells regulated by mechanical forces. J Biomech 2021; 131:110917. [PMID: 34952348 DOI: 10.1016/j.jbiomech.2021.110917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Cell death of endothelial cells (ECs) is a common devastating consequence of various vascular-related diseases. Atherosclerosis, hypertension, sepsis, diabetes, cerebral ischemia and cardiac ischemia/reperfusion injury, and chronic kidney disease remain major causes of morbidity and mortality worldwide, in which ECs are constantly subjected to a great amount of dynamic changed mechanical forces including shear stress, extracellular matrix stiffness, mechanical stretch and microgravity. A thorough understanding of the regulatory mechanisms by which the mechanical forces controlled the cell deaths including apoptosis, autophagy, and pyroptosis is crucial for the development of new therapeutic strategies. In the present review, experimental and clinical data highlight that nutrient depletion, oxidative stress, tumor necrosis factor-α, high glucose, lipopolysaccharide, and homocysteine possess cytotoxic effects in many tissues and induce apoptosis of ECs, and that sphingosine-1-phosphate protects ECs. Nevertheless, EC apoptosis in the context of those artificial microenvironments could be enhanced, reduced or even reversed along with the alteration of patterns of shear stress. An appropriate level of autophagy diminishes EC apoptosis to some extent, in addition to supporting cell survival upon microenvironment challenges. The intervention of pyroptosis showed a profound effect on atherosclerosis. Further cell and animal studies are required to ascertain whether the alterations in the levels of cell deaths and their associated regulatory mechanisms happen at local lesion sites with considerable mechanical force changes, for preventing senescence and cell deaths in the vascular-related diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoqiang Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Qiu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenli Jiang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyi Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Mandal S, Bandyopadhyay S, Tyagi K, Roy A. Recent advances in understanding the molecular role of phosphoinositide-specific phospholipase C gamma 1 as an emerging onco-driver and novel therapeutic target in human carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188619. [PMID: 34454048 DOI: 10.1016/j.bbcan.2021.188619] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023]
Abstract
Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.
Collapse
Affiliation(s)
- Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India.
| | - Shrabasti Bandyopadhyay
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
6
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
7
|
Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B, Xin Y. Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med 2021; 21:44. [PMID: 33273973 PMCID: PMC7706387 DOI: 10.3892/etm.2020.9475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs 21-23 nucleotides in length that regulate gene expression, and thereby modulate signaling pathways and protein synthesis in both physiological and pathogenic processes. miR-30b inhibits cell proliferation, migration, invasion and epithelial-mesenchymal transformation in multiple types of cancer. In addition to its role in several types of neoplasias, miR-30b has been shown to exhibit essential roles in cardiovascular and metabolic diseases. In the present review, an overview of the biological functions of miR-30b and its role in the pathogenesis of neoplastic, cardiovascular and metabolic diseases is provided. miR-30b is a potential candidate for clinical development as a diagnostic and prognostic biomarker, therapeutic agent and drug target. However, further research is required to elucidate its role in health and disease and to harness its potential clinical utility.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Shousheng Liu
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
| | - Jie Zhang
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Xuefeng Ma
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Mengzhen Dong
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Baokai Sun
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| | - Yongning Xin
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, Shandong 266071, P.R. China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
8
|
Cheng N, Li L, Wu Y, Wang M, Yang M, Wei S, Wang R. microRNA-30e up-regulation alleviates myocardial ischemia-reperfusion injury and promotes ventricular remodeling via SOX9 repression. Mol Immunol 2020; 130:96-103. [PMID: 33293097 DOI: 10.1016/j.molimm.2020.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
AIM At present, studies have focused on microRNAs (miRNAs) in myocardial ischemia-reperfusion injury (MI/RI). But the specific role of miR-30e hasn't been fully explored. Thus, this study is to uncover the mechanism of miR-30e in MI/RI. METHODS MI/RI models of rats and hypoxia/reoxygenation injury (H/R) models of H9C2 cardiomyocytes were established. Rats were injected with miR-30e and SRY-related high mobility group-box gene 9 (SOX9)-related oligonucleotides or vectors to explore their roles in MI/RI. H9C2 cardiomyocytes were transfected with restored miR-30e and depleted SOX9 to decipher their function in H/R injury. miR-30e and SOX9 expression in myocardial tissues and cardiomyocytes were detected. Online website prediction and luciferase activity assay were applied to validate the targeting relationship between miR-30e and SOX9. RESULTS Decreased miR-30e and increased SOX9 were found in myocardial tissues of MI/RI rats and H/R-treated cardiomyocytes. miR-30e targeted SOX9. miR-30e up-regulation or SOX9 down-regulation reduced cardiac function damage and suppressed oxidative stress, inflammation, cardiomyocyte apoptosis and myocardial enzymes in myocardial tissues of MI/RI rats. Restoring miR-30e or silencing SOX9 energized cell viability and inhibited apoptosis of H/R-treated cardiomyocytes. Down-regulating SOX9 reversed the effects of miR-30e down-regulation on myocardial injury, ventricular remodeling, cardiomyocyte damage and apoptosis in MI/RI. CONCLUSION It is concluded that miR-30e elevation alleviated cardiac function damage and promoted ventricular remodeling via SOX9 repression.
Collapse
Affiliation(s)
- Nan Cheng
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Libin Li
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yuanbin Wu
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Mingyan Wang
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ming Yang
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shixiong Wei
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China
| | - Rong Wang
- Department of Cardiovascular Surgery, PLA General Hospital, No. 28. Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
9
|
Solini A, Seghieri M, Giannini L, Biancalana E, Parolini F, Rossi C, Dardano A, Taddei S, Ghiadoni L, Bruno RM. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J Clin Endocrinol Metab 2019; 104:4253-4263. [PMID: 31162549 DOI: 10.1210/jc.2019-00706] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Mechanisms mediating the cardiovascular and renal protection exerted by SGLT2 inhibitors are still partially unknown. We investigated whether dapagliflozin modulates systemic and renal vascular function and structure, and induces epigenetic modifications. SUBJECTS AND METHODS Forty hypertensive patients with type 2 diabetes were randomly assigned to 4-week treatment with dapagliflozin 10 mg or hydrochlorothiazide (HCT) 12.5 mg. Routine analyses; plasma renin activity; aldosterone, catecholamine, and 24-hour urinary electrolyte levels; flow-mediated dilation (FMD) of the brachial artery; carotid-femoral pulse-wave velocity (PWV); augmentation index; and resistive index and dynamic renal resistive index (DRIN) were measured at baseline and after treatment. Circulating miRNAs (miRs) related to heart failure (miR30e-5p, miR199a-3p), endothelial dysfunction (miR27b and miR200b), and renal function (miR130b-3p, miR21-5p) were assessed and related to the effects of treatments. RESULTS Dapagliflozin and HCT marginally lowered blood pressure. Fasting glucose was lowered, whereas 24-hour diuresis, glycosuria, and osmolar clearance were increased by dapagliflozin (P < 0.001 for all), without affecting sodium excretion and glomerular filtration rate. Magnesium levels significantly increased after dapagliflozin treatment (P = 0.02). Neither dapagliflozin nor HCT modified FMD or PWV. DRIN did not vary in the dapagliflozin group, whereas it increased in the HCT group (P = 0.047 for time by treatment interaction). Both treatments induced variations in the expression of some miRs; dapagliflozin, but not HCT, significantly up-regulated miR30e-5p and downregulated miR199a-3p. CONCLUSION A putative epigenetic regulation of the protecting cardiovascular effect exerted by SGLT2 inhibitors was found. Dapagliflozin might exert nephroprotection by preserving renal vasodilating capacity.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Marta Seghieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Livia Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Maria Bruno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Li B, Hu J, Chen X. MicroRNA-30b protects myocardial cell function in patients with acute myocardial ischemia by targeting plasminogen activator inhibitor-1. Exp Ther Med 2018; 15:5125-5132. [PMID: 29805539 DOI: 10.3892/etm.2018.6039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/18/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to determine the expression of plasminogen activator inhibitor-1 (PAI-1) and microRNA (miR)-30b in the blood of patients with acute myocardial ischemia (AMI) and in the blood and myocardial tissue of mice with AMI. In addition, the present study aimed to identify the mechanism of action of miR-30b in AMI. A total of 36 patients with AMI were included in the present study and 28 healthy subjects were included as a control. Peripheral blood was collected from all subjects. For animal experiments, mice in the AMI group received an intraperitoneal injection of pituitrin (20 U/kg), whereas mice in the negative control group received an intraperitoneal injection of the same volume of saline. Blood and myocardial tissue was collected from all mice for analysis. Reverse transcription-quantitative polymerase chain reaction was performed to determine the expression of PAI-1 mRNA and miR-30b in the serum and myocardial tissue. An enzyme-linked immunosorbent assay was performed to measure the expression of PAI-1 protein in the serum of humans and mice, whereas western blotting was performed to determine the expression of PAI-1 protein in mouse myocardial tissue. Catalase, glutathione peroxidase and superoxide dismutase activity was measured using an automatic biochemical analyzer. A dual luciferase assay was performed to identify the interactions between PAI-1 mRNA and miR-30b. The results indicated that patients with AMI have higher PAI-1 levels and lower miR-30b expression in the peripheral blood compared with healthy subjects. AMI damaged the myocardium tissue of mice and reduced catalase, glutathione peroxidase and superoxide dismutase activity. Mice that have undergone AMI exhibit increased PAI-1 levels but decreased miR-30b expression in the peripheral blood and myocardial tissues. It was also demonstrated that miR-30b is able to bind to the 3'-untranslated region of PAI-1 mRNA to regulate its expression. The present study demonstrates that patients with AMI exhibit decreased miR-30b expression and elevated PAI-1 expression in the peripheral blood. miR-30b may therefore inhibit the damage to myocardial cells that occurs following AMI and protect myocardial cell function by targeting PAI-1 expression.
Collapse
Affiliation(s)
- Bin Li
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Jie Hu
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| | - Xingpeng Chen
- Department of Cardiac Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, P.R. China
| |
Collapse
|