1
|
Sun K, Chen M, Kong X, Hou W, Xu Z, Liu L. Cardiac-specific Suv39h1 knockout ameliorates high-fat diet induced diabetic cardiomyopathy via regulating Hmox1 transcription. Life Sci 2025; 360:123258. [PMID: 39580141 DOI: 10.1016/j.lfs.2024.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
AIM Diabetic Cardiomyopathy (DCM), a common complication of Type 2 Diabetic Mellitus (T2DM), has been emerging as one of the leading causes of mortality in T2DM patients. During the past decade, although, clinical studies concerning DCM are increasing at an exponential rate, mechanisms underlying this disease still can't be clearly defined. Here, we aim to recognize the function of Suv39h1 in DCM and to explore underlying mechanisms during this disease, providing new insights into DCM and novel guide for clinical therapy development. MATERIALS AND METHODS We employed cardiac specific Suv39h1 knockout mice to reveal the role of Suv39h1 in high-fat diet induced DCM and using human cardiomyocyte line AC16 cells treated with Suv39h1 siRNA or inhibitor Chaetocin to further explore the mechanism during lipotoxicity condition. KEY FINDINGS Cardiac Suv39h1 knockout ameliorated manifestations of DCM, including cardiac function indexes, cardiomyocyte hypertrophy, interstitial fibrosis, along with improved metabolic disorder in mice. Further, interfering human AC16 cardiomyocytes with siSuv39h1 down-regulated lipotoxicity induced cardiac hypertrophy, inflammation, and fibrosis markers. Subsequent mRNA-seq using siSuv39h1 and SCR AC16 cells discovered a well-recognized cytoprotective, anti-oxidant, and anti-inflammation factor-Hmox1, prominently upregulated in Suv39h1 ablation cells versus SCR under lipotoxicity condition. ChIP assay revealed that Suv39h1 could bind to Hmox1 promoter and reversed by Chaetocin or small interfering RNA. SIGNIFICANCE These results suggested that the protective effects in DCM rendered by Suv39h1 ablation may work through activating Hmox1 transcription and protein function, providing new insights into pathogenesis of DCM and novel epigenetic target for clinical DCM therapies.
Collapse
Affiliation(s)
- Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Maohui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Xiangyu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Weiyuan Hou
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China
| | - Zhiwei Xu
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China.
| | - Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China.
| |
Collapse
|
2
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Nie Q, Li M, Huang C, Yuan Y, Liang Q, Ma X, Qiu T, Li J. The clinical efficacy and safety of berberine in the treatment of non-alcoholic fatty liver disease: a meta-analysis and systematic review. J Transl Med 2024; 22:225. [PMID: 38429794 PMCID: PMC10908013 DOI: 10.1186/s12967-024-05011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.
Collapse
Affiliation(s)
- Qilong Nie
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Mingyang Li
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Caiyang Huang
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Yongwei Yuan
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Qiuyan Liang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Xiaojun Ma
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Tengyu Qiu
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Jianhong Li
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China.
| |
Collapse
|
4
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
5
|
Łanoszka K, Vlčková N. Natural Sirtuin1 Activators and Atherosclerosis: an Overview. Curr Atheroscler Rep 2023; 25:979-994. [PMID: 38038821 PMCID: PMC10770200 DOI: 10.1007/s11883-023-01165-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the most recent findings investigating the impact of several natural sirtuin (SIRT) activators, particularly SIRT1, on atherosclerosis. RECENT FINDINGS Sirtuins that belong to a family of class III histone deacetylases are believed to be novel therapeutic targets to treat age-related and chronic diseases. SIRT expression is regulated by small molecules called SIRT-activating compounds that can be found in natural food products. SIRT1 may exert protective effects in atherosclerosis, which is said to be a major cause of cardiovascular diseases. Most of the evidence supporting the beneficial effects of these natural compounds comes from in vitro or animal-based studies, while there have been particularly few or inconsistent human-based studies evaluating their long-term impact in recent years. SIRT1 activation has been demonstrated to mitigate or prevent atherosclerosis through various mechanisms. However, further research is required to determine the optimal SIRT activator dosage and to establish a stronger correlation between health effects and the administration of bioactive compounds. Additionally, conducting more human clinical trials is necessary to ensure the safety of these compounds for preventing atherosclerosis development.
Collapse
Affiliation(s)
- Karolina Łanoszka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland
| | - Nimasha Vlčková
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka Street, 30-149, Krakow, Poland.
| |
Collapse
|
6
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
7
|
Fang Q, Bai Y, Hu S, Ding J, Liu L, Dai M, Qiu J, Wu L, Rao X, Wang Y. Unleashing the Potential of Nrf2: A Novel Therapeutic Target for Pulmonary Vascular Remodeling. Antioxidants (Basel) 2023; 12:1978. [PMID: 38001831 PMCID: PMC10669195 DOI: 10.3390/antiox12111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary vascular remodeling, characterized by the thickening of all three layers of the blood vessel wall, plays a central role in the pathogenesis of pulmonary hypertension (PH). Despite the approval of several drugs for PH treatment, their long-term therapeutic effect remains unsatisfactory, as they mainly focus on vasodilation rather than addressing vascular remodeling. Therefore, there is an urgent need for novel therapeutic targets in the treatment of PH. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor that regulates endogenous antioxidant defense and emerges as a novel regulator of pulmonary vascular remodeling. Growing evidence has suggested an involvement of Nrf2 and its downstream transcriptional target in the process of pulmonary vascular remodeling. Pharmacologically targeting Nrf2 has demonstrated beneficial effects in various diseases, and several Nrf2 inducers are currently undergoing clinical trials. However, the exact potential and mechanism of Nrf2 as a therapeutic target in PH remain unknown. Thus, this review article aims to comprehensively explore the role and mechanism of Nrf2 in pulmonary vascular remodeling associated with PH. Additionally, we provide a summary of Nrf2 inducers that have shown therapeutic potential in addressing the underlying vascular remodeling processes in PH. Although Nrf2-related therapies hold great promise, further research is necessary before their clinical implementation can be fully realized.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Bai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiqing Hu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Ding
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Qiu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.F.); (Y.B.); (S.H.); (J.D.); (L.L.); (M.D.); (J.Q.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Yang G, Zhou S, He H, Shen Z, Liu Y, Hu J, Wang J. Exploring the "gene-protein-metabolite" network of coronary heart disease with phlegm and blood stasis syndrome by integrated multi-omics strategy. Front Pharmacol 2022; 13:1022627. [PMID: 36523490 PMCID: PMC9744761 DOI: 10.3389/fphar.2022.1022627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2024] Open
Abstract
Background: According to the theory of traditional Chinese medicine, phlegm and blood stasis (PBS) is the pathological basis for coronary heart disease (CHD). This study aimed to explore the biological basis of PBS syndrome in CHD. Methods: Using a strategy that integrated RNA-seq, DIA-based proteomics, and untargeted metabolomics on 90 clinic samples, we constructed a "gene-protein-metabolite" network for CHD-PBS syndrome. We expanded the sample size and validated the differential genes and metabolites in the network through enzyme-linked immunosorbent assay. Results: Our findings revealed that the "gene-protein-metabolite" network of CHD-PBS syndrome included 33 mRNAs, four proteins, and 25 metabolites. JNK1, FOS, CCL2, CXCL8, PTGS2, and CSF1 were all poorly expressed in the PBS group during the sequencing stage, whereas arachidonic acid (AA) was highly expressed. During the validation stage, JNK1, AP-1, CCL2, and CXCL8 were poorly expressed, whereas PTGS2, CSF1, and AA were highly expressed. The area under the receiver operating curve was as follows: CSF1 [0.9635, 95%CI (0.9295, 0.9976)] >JNK1 [0.9361, 95% CI (0.8749, 0.9972)] >CXCL8 [0.8953, 95% CI (0.8222, 0.9684)] > CCL2 [0.8458, 95% CI (0.7676, 0.9241)] >AP-1 [0.7884, 95%CI (0.6869, 0.8899)]. The logistic regression model composed of CSF1 and JNK1 showed the greatest diagnostic value and significance for PBS syndrome. Conclusion: PBS syndrome is characterized by low levels of FOS, AP-1, CCL2, CXCL8, and JNK1 and elevated levels of PTGS2 and CSF1, implying that the AA metabolism is abnormal and that the JNK/AP-1 pathway is inhibited. PBS syndromes, as a subtype of CHD, may have unique molecular changes. Background. Globally, coronary heart disease (CHD) is the leading cause of death, and this would likely continue until 2030 (Mirzaei et al., 2009, 95, 740-746). According to the disease course, CHD can be classified as chronic stable CHD (or chronic coronary syndrome) and acute coronary syndrome (ACS) (Katus et al., 2017; Knuuti, 2019). Although stable CHD is not as lethal as ACS, it has a varied incidence range and patients with CHD have prolonged angina. Some symptoms of stable angina are alleviated with pharmacological therapy, but it cannot eliminate recurrent angina (Rousan et al., 2017). The clinical outcomes were not significantly improved in patients who underwent revascularization compared with those who received optimal pharmacological therapy (Shaw et al., 2008; Antman and Braunwald, 2020). A bottleneck appears to exist in CHD treatment, and traditional Chinese medicine (TCM) can act as a favorable complement. Because of its individualized treatment approach, TCM is widely practiced in eastern civilizations (Teng et al., 2016). TCM has become a principal complement in western countries (Wieland et al., 2013). Like "disease" is used in western medicine, "syndrome" is used in TCM to comprehend anomalous human conditions on the basis of patients' symptoms, tongue, and pulse (Li et al., 2012). On the basis of disease-syndrome diagnose, a TCM doctor can subclassify CHD patients into various categories, such as phlegm and blood stasis (PBS) syndrome, cold congealing and Qi stagnation syndrome, and Qi stagnation and blood stasis syndrome. PBS syndrome has recently emerged as a hot research topic in the TCM field. Objective diagnosis, expert consultations, and efficacy evaluation scales have been developed for PBS syndrome (Ren et al., 2020; Liu et al., 2021; Zheng et al., 2022). The concept of "omics" originates from the genome. It refers to the vocabulary generated by biological molecules at different levels to describe high-sequence molecular biological data resources (Dai and Shen, 2022). RNA, protein, and metabolites decipher the essence of complex etiologies, and the integration of transcriptomics, proteomics, and metabolomics are becoming a promising research mode (Pan et al., 2022). Multi-omics studies have revealed the biological characteristics of APOE transgenic mice, bronchopulmonary dysplasia, and plant tolerant to heavy metals (Singh et al., 2016; Lal et al., 2018; Mohler et al., 2020). Over the past few years, many academic achievements related to CHD-PBS syndrome have been accrued in the single-omic area. For example, Zhou identified the differential metabolites between PBS syndrome and Qi and Yin deficiency syndrome by using the urine samples of 1072 volunteers. Some of the specific metabolites of PBS syndrome are pyroglutamic acid, glutaric acid, glucose, mannitol, and xanthine (Zhou et al., 2019). Li's metabolomic study suggested that valine, leucine, isoleucine, and glycerol phospholipid metabolism could represent PBS syndrome (Zheng et al., 2022). Although some progress has been made in the understanding of PBS syndrome in CHD through the studies conducted, some issues still exist, such as a single-omics level, a lack of in-depth research, an inability to verify each other's research results, and a lack of validation of research conclusions. Overall, a systematic description of the biological foundation of PBS syndrome is lacking. Thus, the present study utilizes system biology methodologies and constructs a multi-omics network by integrating differential genes, proteins, and metabolites to systematically and comprehensively reveal the biological basis of CHD-PBS syndrome. The current study explored 1) the characteristics of the transcriptome, proteome, and metabolome for CHD-PBS syndrome; 2) the "gene-protein-metabolite" network based on differential genes (DGs), differential proteins (DPs), and differential metabolites (DMs); 3) the key biological process and metabolic pathway most related to PBS syndrome; and 4) quantitative results and the diagnostic potential of biomarkers for PSB syndrome. Materials and methods. Multi-omics sequencing, bioinformatics analysis, and clinical validation research strategy. We collected the blood samples from healthy subjects as well as CHD patients with PBS and non-phlegm and blood stasis (NPBS) syndrome to compare the differences between them by subjecting the samples to the transcriptome, proteome, and metabolomics analyses. Bioinformatics analysis identified differential molecules as well as related biological processes and pathways. Next, the "gene-protein-metabolite" network was constructed using the MetaboAnalyst database, String database, and Cytoscape software. We selected molecules with strong centrality and biological association as potential PBS syndrome biomarkers and recruited more volunteers for further validation by enzyme-linked immunosorbent assay (ELISA). Finally, the ROC curve was utilized to assess the level and diagnostic efficacy of various molecules (Figure 1).
Collapse
Affiliation(s)
- Guang Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyuan Zhou
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haoqiang He
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zinuo Shen
- School of traditional chinese medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- *Correspondence: Jun Hu, ; Jie Wang,
| |
Collapse
|
9
|
Song X, Wang X, Wang D, Zheng Z, Li J, Li Y. Natural drugs targeting inflammation pathways can be used to treat atherosclerosis. Front Pharmacol 2022; 13:998944. [PMID: 36386165 PMCID: PMC9663817 DOI: 10.3389/fphar.2022.998944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is the chronic gradual degradation of arteries in combination with inflammation. Currently, the main research focus has been on interactions between inflammatory cells, inflammatory mediators, and immune mechanisms, while some studies have reported natural drugs were exerting a critical role against AS, whereas the usage of natural drugs was always limited by various factors such as poor penetration across biological barriers, low bioavailability, and unclear mechanisms. Herein, we reviewed the potential targets for inflammation against AS, discussed the underlying mechanisms of natural drugs for AS, particularly highlighted the dilemma of current research, and finally, offered perspectives in this field.
Collapse
Affiliation(s)
- Xiayinan Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| |
Collapse
|
10
|
Efficacy and Underlying Mechanism of Berberine Against Atherosclerosis: A Meta-Analysis in Preclinical Animal Studies. J Cardiovasc Pharmacol 2022; 80:476-488. [PMID: 35881903 DOI: 10.1097/fjc.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/18/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Atherosclerosis is the primary cause of many cardiovascular diseases, and an increasing number of studies have shown that berberine could delay plaque formation and development. Therefore, we aimed to evaluate its effects and explore its mechanisms in this meta-analysis. We searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and VIP databases for original preclinical studies to conduct meta-analysis. Twelve articles (16 studies; 312 ApoE -/- mice) were included, and all the studies scored 3-5 points according to SYRCLE's risk of bias tool. Berberine could significantly decrease plaque area and plaque macrophage content (plaque area, SMD = -2.02, 95% CI: -2.80 to -1.24, P = 0.000; plaque macrophage content, SMD = -4.28, 95% CI: -7.67 to -0.88, P = 0.013); lower the levels of TC, triglyceride, and low-density lipoprotein (TC, SMD = -1.47, 95% CI: -2.20 to -0.74, P = 0.000; triglyceride, SMD = -0.77, 95% CI: -1.21 to -0.33, P = 0.000; low-density lipoprotein, SMD = -0.61, 95% CI: -1.11 to -0.11, P = 0.000), and change the secretion of inflammatory cytokines (IL-1β, SMD = -2.29, 95% CI: -3.40 to -1.18, P = 0.000; interleukin-6, SMD = -1.48, 95% CI: -2.11 to -0.85, P = 0.008; tumor necrosis factor-α, SMD = -1.98, 95% CI: -3.01 to -0.94, P = 0.000; interleukin-10, SMD = 1.78, 95% CI: 0.76 to 2.80, P = 0.015), but there were no significant differences in high-density lipoprotein levels and plaque lipid content (high-density lipoprotein, SMD = 0.02, 95% CI: -0.35 to 0.40, P = 0.021; plaque lipid content, SMD = -6.85, 95% CI: -21.09 to 7.39, P = 0.007). The results were robust across a range of sensitivity analyses. Therefore, the results indicate that berberine is a promising drug for the treatment of atherosclerosis through regulating lipid metabolism, inflammation, and plaque composition. However, some potential mechanisms remain to be further elucidated.
Collapse
|
11
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
12
|
Modulatory effect of berberine on plasma lipoprotein (or lipid) profile: a review. Mol Biol Rep 2022; 49:10885-10893. [PMID: 35941413 DOI: 10.1007/s11033-022-07623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 10/15/2022]
Abstract
Berberine is a bioactive isoquinoline alkaloid compound extracted from various medicinal plants, such as Barberry. Berberine shows various pharmacological properties that are mainly attributed to its anti-inflammatory and antioxidant effects. A growing body of evidence has shown that berberine influences cholesterol metabolism, and consequently, may ameliorate dyslipidemias and atherosclerosis. Plasma high-density lipoprotein cholesterol (HDL-C) is known to have an independent negative association with incident cardiovascular disease (CVD). However, several outcomes trials and genetic studies have failed to meet expecting the beneficial effects of elevating plasma HDL-C concentrations. Hence, investigations are currently focused on enhancing the functionality of HDL particles, independent of their plasma concentrations. HDL particles show various qualities because of a heterogeneous composition. Consistent with complex metabolism and composition, various biological functions are found for HDL, such as anti-inflammatory, antioxidant, anti-apoptotic, and anti-thrombotic activities. Protective effects of berberine may impact the functionality of HDL; therefore, the present literature review was intended to determine whether berberine can amplify HDL function. It was concluded that berberine may regulate markers of HDL activity, such as apo-AI, cholesterol efflux, LCAT, PON1, and S1P activities and levels. Consequently, berberine may recuperate conditions with dysfunctional HDL and, therefore, have the potential to emerge as a therapeutic agent. However, further human trials of berberine are warranted to evaluate its impact on HDL function and cholesterol metabolism.
Collapse
|
13
|
Wang Y, Li D, Jia Z, Hui J, Xin Q, Zhou Q, Cong W, Xu F. A Bibliometric Analysis of Research on the Links Between Gut Microbiota and Atherosclerosis. Front Cardiovasc Med 2022; 9:941607. [PMID: 35903667 PMCID: PMC9314574 DOI: 10.3389/fcvm.2022.941607] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 12/23/2022] Open
Abstract
BackgroundEmerging evidence has linked gut microbiota (GM) and its related metabolites to atherosclerosis (AS). This study aimed to analyze the evolution of GM in AS in the past decades, and provide valuable insights in this field.MethodsWeb of Science Core Collection (WoSCC) was applied to retrieve the publications related to GM in AS from their inception until 2 December 2021, and the data was analyzed in Microsoft Excel, Scimago Graphica, CiteSpace, and VOSviewer.ResultsIn total, 560 documents were extracted from the WoSCC databases. The publications have shown rapid growth since 2008. China and Cleveland Clin were the most prolific country and institution, respectively. The journal with the most publications is Nutrients, and Nature was the most co-cited journal. Among 3556 related authors, Hazen, Stanley L., Tang, W. H. Wilson, and Wang, Zeneng were the top 3 contributing authors in this field. Aside from “gut microbiota,” “atherosclerosis,” the terms “TMAO,” “metabolite,” “obesity,” and “phosphatidylcholine” were frequently occurred in the abstract and title of articles. Burst detection of keywords indicated that “metabolic syndrome,” “acid,” and “bile acid” were hot topics in recent years. According to the co-citation analysis of references, the research focus in this area has changed over time, and recent researches focus on choline, hypertension, butyrate, and berberine.ConclusionOur study showed that the researches of GM in AS have been flourishing, and the content themes were constantly deepened. Human GM is critical to atherosclerotic diseases, and this hot topic is still worthy of more focus in the future.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dandan Li
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaqi Hui
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qingbing Zhou,
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Weihong Cong,
| | - Fengqin Xu
- Institute of Geriatric, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Fengqin Xu,
| |
Collapse
|
14
|
Hou M, Lu L, Wu X, Liu H. LCZ696 Ameliorates Isoproterenol-Induced Acute Heart Failure in Rats by Activating the Nrf2 Signaling Pathway. Appl Bionics Biomech 2022; 2022:6077429. [PMID: 35528528 PMCID: PMC9076311 DOI: 10.1155/2022/6077429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Objective LCZ696 (sacubitril/valsartan) is an angiotensin II (Ang II) type 1 receptor-neprilysin inhibitor, with effects of immunosuppression, anti-inflammation, antiapoptosis, and antioxidation. The present study was aimed at determining whether LCZ696 has a protective effect against isoproterenol-induced acute heart failure (AHF) in rats. Methods SD rats were randomly divided into four groups: control group, HF group, LCZ696 group, and enalapril group. The cardiac function of rats was evaluated using echocardiographic parameters, heart weight (HW), serum levels of cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). HE is staining, which was used to determine the pathological damage of rat myocardial tissue. Also, we measured oxidative stress markers including reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT). Finally, the expression of Nrf2 signaling pathway-related proteins was determined using Western blot. Results Compared with the HF group, LCZ696 could significantly improve cardiac function and myocardial injury in rats and reduce AHF-induced oxidative stress. In addition, the results of Western blot confirmed that LCZ696 could upregulate the expression of Nrf2 and HO-1 while decreasing Keap1 expression. Conclusion LCZ696 ameliorates isoproterenol-induced AHF in rats by alleviating oxidative stress injury and activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Min Hou
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linxin Lu
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobo Wu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Lymphoma, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Hongxuan Liu
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
15
|
An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, Gao Y, Xing Y. Promising Antioxidative Effect of Berberine in Cardiovascular Diseases. Front Pharmacol 2022; 13:865353. [PMID: 35321323 PMCID: PMC8936808 DOI: 10.3389/fphar.2022.865353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, has been used in Chinese traditional medicine for over 3,000 years. BBR has been shown in both traditional and modern medicine to have a wide range of pharmacological actions, including hypoglycemic, hypolipidemic, anti-obesity, hepatoprotective, anti-inflammatory, and antioxidant activities. The unregulated reaction chain induced by oxidative stress as a crucial mechanism result in myocardial damage, which is involved in the pathogenesis and progression of many cardiovascular diseases (CVDs). Numerous researches have established that BBR protects myocardium and may be beneficial in the treatment of CVDs. Given that the pivotal role of oxidative stress in CVDs, the pharmacological effects of BBR in the treatment and/or management of CVDs have strongly attracted the attention of scholars. Therefore, this review sums up the prevention and treatment mechanisms of BBR in CVDs from in vitro, in vivo, and finally to the clinical field trials timely. We summarized the antioxidant stress of BBR in the management of coronary atherosclerosis and myocardial ischemia/reperfusion; it also analyzes the pathogenesis of oxidative stress in arrhythmia and heart failure and the therapeutic effects of BBR. In short, BBR is a hopeful drug candidate for the treatment of CVDs, which can intervene in the process of CVDs from multiple angles and different aspects. Therefore, if we want to apply it to the clinic on a large scale, more comprehensive, intensive, and detailed researches are needed to be carried out to clarify the molecular mechanism and targets of BBR.
Collapse
Affiliation(s)
- Na An
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guoxia Zhang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingjian Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Chao Yuan
- Dezhou Second People’s Hospital, Dezhou, China
| | - Fan Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lijing Zhang
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
17
|
Gutiérrez-Cuevas J, Galicia-Moreno M, Monroy-Ramírez HC, Sandoval-Rodriguez A, García-Bañuelos J, Santos A, Armendariz-Borunda J. The Role of NRF2 in Obesity-Associated Cardiovascular Risk Factors. Antioxidants (Basel) 2022; 11:235. [PMID: 35204118 PMCID: PMC8868420 DOI: 10.3390/antiox11020235] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The raising prevalence of obesity is associated with an increased risk for cardiovascular diseases (CVDs), particularly coronary artery disease (CAD), and heart failure, including atrial fibrillation, ventricular arrhythmias and sudden death. Obesity contributes directly to incident cardiovascular risk factors, including hyperglycemia or diabetes, dyslipidemia, and hypertension, which are involved in atherosclerosis, including structural and functional cardiac alterations, which lead to cardiac dysfunction. CVDs are the main cause of morbidity and mortality worldwide. In obesity, visceral and epicardial adipose tissue generate inflammatory cytokines and reactive oxygen species (ROS), which induce oxidative stress and contribute to the pathogenesis of CVDs. Nuclear factor erythroid 2-related factor 2 (NRF2; encoded by Nfe2l2 gene) protects against oxidative stress and electrophilic stress. NRF2 participates in the regulation of cell inflammatory responses and lipid metabolism, including the expression of over 1000 genes in the cell under normal and stressed environments. NRF2 is downregulated in diabetes, hypertension, and inflammation. Nfe2l2 knockout mice develop structural and functional cardiac alterations, and NRF2 deficiency in macrophages increases atherosclerosis. Given the endothelial and cardiac protective effects of NRF2 in experimental models, its activation using pharmacological or natural products is a promising therapeutic approach for obesity and CVDs. This review provides a comprehensive summary of the current knowledge on the role of NRF2 in obesity-associated cardiovascular risk factors.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Marina Galicia-Moreno
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Hugo Christian Monroy-Ramírez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Ana Sandoval-Rodriguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Jesús García-Bañuelos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara 44340, JAL, Mexico; (M.G.-M.); (H.C.M.-R.); (A.S.-R.); (J.G.-B.)
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, JAL, Mexico;
| |
Collapse
|
18
|
Zhang Y, Liu D, Long XX, Fang QC, Jia WP, Li HT. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl) 2021; 134:2931-2943. [PMID: 34939977 PMCID: PMC8710326 DOI: 10.1097/cm9.0000000000001890] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT The morbidity and mortality of cardiovascular diseases (CVDs) are increasing worldwide and seriously threaten human life and health. Fibroblast growth factor 21 (FGF21), a metabolic regulator, regulates glucose and lipid metabolism and may exert beneficial effects on the cardiovascular system. In recent years, FGF21 has been found to act directly on the cardiovascular system and may be used as an early biomarker of CVDs. The present review highlights the recent progress in understanding the relationship between FGF21 and CVDs including coronary heart disease, myocardial ischemia, cardiomyopathy, and heart failure and also explores the related mechanism of the cardioprotective effect of FGF21. FGF21 plays an important role in the prediction, treatment, and improvement of prognosis in CVDs. This cardioprotective effect of FGF21 may be achieved by preventing endothelial dysfunction and lipid accumulating, inhibiting cardiomyocyte apoptosis and regulating the associated oxidative stress, inflammation and autophagy. In conclusion, FGF21 is a promising target for the treatment of CVDs, however, its clinical application requires further clarification of the precise role of FGF21 in CVDs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao-Xue Long
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi-Chen Fang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hua-Ting Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
19
|
Cai Y, Wen J, Ma S, Mai Z, Zhan Q, Wang Y, Zhang Y, Chen H, Li H, Wu W, Li R, Luo C. Huang-Lian-Jie-Du Decoction Attenuates Atherosclerosis and Increases Plaque Stability in High-Fat Diet-Induced ApoE -/- Mice by Inhibiting M1 Macrophage Polarization and Promoting M2 Macrophage Polarization. Front Physiol 2021; 12:666449. [PMID: 34539422 PMCID: PMC8445160 DOI: 10.3389/fphys.2021.666449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023] Open
Abstract
Macrophage polarization plays a vital impact in triggering atherosclerosis (AS) progression and regression. Huang-Lian-Jie-Du Decoction (HLJDD), a famous traditional Chinese decoction, displays notable anti-inflammatory and lipid-lowering effects in different animal models. However, its effects and mechanisms on AS have not been clearly defined. We determined whether HLJDD attenuated atherosclerosis and plaques vulnerability by regulating macrophage polarization in ApoE−/− mice induced by high-fat diet (HFD). Furthermore, we investigated the effects of HLJDD on macrophage polarization in oxidized low-density lipoprotein (ox-LDL) induced RAW264.7 cells. For in vivo assay, compared with the model group, HLJDD ameliorated lipid metabolism, with significantly decreased levels of serum triglyceride, total cholesterol (CHOL), and lipid density lipoprotein. HLJDD suppressed serum tumor necrosis factor α (TNF-α) and IL-1β levels with increased serum IL-10 level, and inhibited mRNA level of NLRP3 inflammasome in carotid tissues. HLJDD enhanced carotid lesion stability by decreasing macrophage infiltration together with increased expression of collagen fibers and α-SMA. Moreover, HLJDD inhibited M1 macrophage polarization, which decreased the expression and mRNA levels of M1 markers [inducible nitric oxide synthase (iNOS) and CD86]. HLJDD enhanced alternatively activated macrophage (M2) activation, which increased the expression and mRNA levels of M2 markers (Arg-1 and CD163). For in vitro assay, HLJDD inhibited foam cell formation in RAW264.7 macrophages disturbed by ox-LDL. Besides, groups with ox-LDL plus HLJDD drug had a lower expression of CD86 and mRNA levels of iNOS, CD86, and IL-1β, but higher expression of CD163 and mRNA levels of Arg-1, CD163, and IL-10 than ox-LDL group. Collectively, our results revealed that HLJDD alleviated atherosclerosis and promoted plaque stability by suppressing M1 polarization and enhancing M2 polarization.
Collapse
Affiliation(s)
- Yinhe Cai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junmao Wen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siwen Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhexing Mai
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunzhang Zhan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yijun Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyao Zhang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - He Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiyi Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rong Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjin Luo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
20
|
Yu F, Gajendran B, Wang N, Sample KM, Liu W, Wang C, Hu A, Zacksenhaus E, Hao X, Ben-David Y. ERK activation via A1542/3 limonoids attenuates erythroleukemia through transcriptional stimulation of cholesterol biosynthesis genes. BMC Cancer 2021; 21:680. [PMID: 34107900 PMCID: PMC8191108 DOI: 10.1186/s12885-021-08402-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background Cholesterol plays vital roles in human physiology; abnormal levels have deleterious pathological consequences. In cancer, elevated or reduced expression of cholesterol biosynthesis is associated with good or poor prognosis, but the underlying mechanisms are largely unknown. The limonoid compounds A1542 and A1543 stimulate ERK/MAPK by direct binding, leading to leukemic cell death and suppression of leukemia in mouse models. In this study, we investigated the downstream consequences of these ERK/MAPK agonists in leukemic cells. Methods We employed RNAseq analysis combined with Q-RT-PCR, western blot and bioinformatics to identify and confirm genes whose expression was altered by A1542 and A1543 in leukemic cells. ShRNA lentiviruses were used to silence gene expression. Cell culture and an animal model (BALB/c) of erythroleukemia induced by Friend virus were utilized to validate effects of cholesterol on leukemia progression. Results RNAseq analysis of A1542-treated cells revealed the induction of all 18 genes implicated in cholesterol biosynthesis. Expression of these cholesterol genes was blocked by cedrelone, an ERK inhibitor. The cholesterol inhibitor lovastatin diminished ERK/MAPK activation by A1542, thereby reducing leukemic cell death induced by this ERK1/2 agonist. Growth inhibition by cholesterol was observed both at the intracellular level, and when orally administrated into a leukemic mouse model. Both HDL and LDL also suppressed leukemogenesis, implicating these lipids as important prognostic markers for leukemia progression. Mechanistically, knockdown experiments revealed that the activation of SREBP1/2 by A1542-A1543 was responsible for induction of only a sub-set of cholesterol biosynthesis genes. Induction of other regulatory factors by A1542-A1543 including EGR1, AP1 (FOS + JUN) LDLR, IER2 and others may cooperate with SREBP1/2 to induce cholesterol genes. Indeed, pharmacological inhibition of AP1 significantly inhibited cholesterol gene expression induced by A1542. In addition to leukemia, high expression of cholesterol biosynthesis genes was found to correlate with better prognosis in renal cancer. Conclusions This study demonstrates that ERK1/2 agonists suppress leukemia and possibly other types of cancer through transcriptional stimulation of cholesterol biosynthesis genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08402-6.
Collapse
Affiliation(s)
- Fang Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - Ning Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Klarke M Sample
- The National Health Commission's Key Laboratory of Immunological Pulmonary Disease, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Anling Hu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute-University Health Network, Toronto, Ontario, Canada
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun District, Guiyang, 550014, Guizhou Province, People's Republic of China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, 550014, Guizhou Province, People's Republic of China.
| |
Collapse
|
21
|
Song L, Zhang J, Lai R, Li Q, Ju J, Xu H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front Pharmacol 2021; 12:675999. [PMID: 34054550 PMCID: PMC8155674 DOI: 10.3389/fphar.2021.675999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a complex chronic disease that occurs in the arterial wall. Oxidative stress plays a crucial role in the occurrence and progression of atherosclerotic plaques. The dominance of oxidative stress over antioxidative capacity generates excess reactive oxygen species, leading to dysfunctions of the endothelium and accelerating atherosclerotic plaque progression. Studies showed that Chinese herbal medicines and traditional Chinese medicine (TCM) might regulate oxidative stress; they have already been used to treat diseases related to atherosclerosis, including stroke and myocardial infarction. This review will summarize the mechanisms of oxidative stress in atherosclerosis and discuss studies of Chinese herbal medicines and TCM preparations treating atherosclerosis, aiming to increase understanding of TCM and stimulate research for new drugs to treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyi Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Syed AM, Ram C, Murty US, Sahu BD. A review on herbal Nrf2 activators with preclinical evidence in cardiovascular diseases. Phytother Res 2021; 35:5068-5102. [PMID: 33894007 DOI: 10.1002/ptr.7137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) are an ever-growing problem and are the most common cause of death worldwide. The uncontrolled production of reactive oxygen species (ROS) and the activation of ROS associated with various cell signaling pathways with oxidative cellular damage are the most common pathological conditions connected with CVDs including endothelial dysfunction, hypercontractility of vascular smooth muscle, cardiac hypertrophy and heart failure. The nuclear factor E2-related factor 2 (Nrf2) is a basic leucine zipper redox transcription factor, together with its negative regulator, kelch-like ECH-associated protein 1 (Keap1), which serves as a key regulator of cellular defense mechanisms to combat oxidative stress and associated diseases. Multiple lines of evidence described here support the cardiac protective property of Nrf2 in various experimental models of cardiac related disease conditions. In this review, we emphasized the molecular mechanisms of Nrf2 and described the detailed outline of current findings on the therapeutic possibilities of the Nrf2 activators specifically from herbal origin in various CVDs. Based on evidence from various preclinical experimental models, we have highlighted the activation of Nrf2 pathway as a budding therapeutic option for the prevention and treatment of CVDs, which needs further investigation and validation in the clinical settings.
Collapse
Affiliation(s)
- Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Guwahati, Assam, India
| |
Collapse
|
23
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
24
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|