1
|
Tsoporis JN, Triantafyllis AS, Kalogeropoulos AS, Izhar S, Rigopoulos AG, Rallidis LS, Sakadakis E, Toumpoulis IK, Salpeas V, Leong-Poi H, Parker TG, Rizos I. Differential Expression of Circulating Damage-Associated Molecular Patterns in Patients with Coronary Artery Ectasia. Biomolecules 2023; 14:10. [PMID: 38275751 PMCID: PMC10813324 DOI: 10.3390/biom14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary artery ectasia (CAE) is defined as abnormal dilation of a coronary artery with a diameter exceeding that of adjacent normal arterial segment by >1.5 times. CAE is a pathological entity of the coronary arteries and characterized as a variant of coronary atherosclerosis. CAE frequently coexists with coronary artery disease (CAD). While inflammation appears to be involved, the pathophysiology of CAE remains unclear. Damage-associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue, are deemed as alarm signals by the innate immune system. Inflammatory agents can generate DAMPs and DAMPs can create a pro-inflammatory state. In a prospective cross-sectional study, we enrolled 29 patients with CAE and non-obstructive CAD, 19 patients with obstructive CAD without CAE, and 14 control subjects with normal (control) coronary arteries age- and sex-matched with the CAE patients, to investigate the differential expression of plasma DAMPs. Patients with CAE and non-obstructive CAD had increased plasma levels of the DAMPs S100B, S100A12, HMGB1, and HSP70, the DAMPs receptor TLR4, and miR328a-3p compared to CAD and controls. Plasma levels of the mir328a-3p target the protective soluble form of the DAMPs receptor for advanced glycation end products (sRAGE), and the antioxidant DJ-1 was decreased in both CAE and CAD compared to controls. In an in vitro human umbilical vein endothelial cells model, circulating levels of S100B, HMGB1, HSP70 as well as CAE patient plasma induced inflammatory responses. The differential expression of the DAMPs S100B, HSP70, HMGB1, and their receptors TLR4 and sRAGE in CAE versus CAD makes them attractive novel biomarkers as therapeutic targets and therapeutics.
Collapse
Affiliation(s)
- James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Andreas S. Triantafyllis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Askepeion General Hospital, 16673 Athens, Greece
| | - Andreas S. Kalogeropoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
- Hygeia HealthCare Group, Department of Cardiology, Mitera General Hospital, 15123 Athens, Greece
| | - Shehla Izhar
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Angelos G. Rigopoulos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Loukianos S. Rallidis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Eleftherios Sakadakis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Ioannis K. Toumpoulis
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Vasileios Salpeas
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| | - Howard Leong-Poi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond St., Toronto, ON M5B 1W8, Canada; (S.I.); (H.L.-P.); (T.G.P.)
| | - Ioannis Rizos
- Second Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece; (A.S.T.); (A.S.K.); (A.G.R.); (L.S.R.); (E.S.); (I.K.T.); (V.S.); (I.R.)
| |
Collapse
|
2
|
Schreiber T, Grune J, Landmesser U, Attanasio P. Detection and modification of biomarkers of inflammation determining successful rhythm control in patients with atrial fibrillation. Biomarkers 2023; 28:681-691. [PMID: 37962292 DOI: 10.1080/1354750x.2023.2284122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/12/2023] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Multiple pathophysiological mechanisms are involved in the pathogenesis of atrial fibrillation (AF). Growing evidence suggests that both local and systemic inflammation plays a key role even in early stages and its progression towards persisting and permanent AF. Rhythm control therapy via pulmonary vein isolation or cardioversion is the cornerstone of AF therapy for most symptomatic patients, yet arrhythmia recurrence after treatment is still common, especially in patients with persistent AF. MATERIAL AND METHODS In this review, we summarize the current state of knowledge of biomarkers of inflammation with prognostic value in patients with atrial fibrillation as well as anti-inflammatory medication with potential benefits after rhythm control therapy. RESULTS AND DISCUSSION Both onset of AF, progression and arrhythmia recurrence after rhythm control therapy can be caused by local and systemic inflammation. Various inflammatory biomarkers have been established to predict treatment success. Furthermore, additional anti-inflammatory therapy may significantly improve success rates.
Collapse
Affiliation(s)
- Tobias Schreiber
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin, Berlin, Germany
| | - Jana Grune
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Philipp Attanasio
- Deutsches Herzzentrum der Charité, Klinik für Kardiologie, Angiologie und Intensivmedizin, Berlin, Germany
| |
Collapse
|
3
|
Imbalzano E, Murdaca G, Orlando L, Gigliotti-De Fazio M, Terranova D, Tonacci A, Gangemi S. Alarmins as a Possible Target of Future Therapies for Atrial Fibrillation. Int J Mol Sci 2022; 23:ijms232415946. [PMID: 36555588 PMCID: PMC9780784 DOI: 10.3390/ijms232415946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
To date, worldwide, atrial fibrillation is the most common cardiovascular disease in adults, with a prevalence of 2% to 4%. The trigger of the pathophysiological mechanism of arrhythmia includes several factors that sustain and exacerbate the disease. Ectopic electrical conductivity, associated with the resulting atrial mechanical dysfunction, atrial remodeling, and fibrosis, promotes hypo-contractility and blood stasis, involving micro endothelial damage. This causes a significant local inflammatory reaction that feeds and sustains the arrhythmia. In our literature review, we evaluate the role of HMGB1 proteins, heat shock proteins, and S100 in the pathophysiology of atrial fibrillation, offering suggestions for possible new therapeutic strategies. We selected scientific publications on the specific topics "alarmins" and "atrial fibrillation" from PubMed. The nonsystematic review confirms the pivotal role of molecules such as S100 proteins, high-mobility group box-1, and heat shock proteins in the molecular pattern of atrial fibrillation. These results could be considered for new therapeutic opportunities, including inhibition of oxidative stress, evaluation of new anticoagulant drugs with novel therapeutic targets, molecular and genetic studies, and consideration of these alarmins as predictive or prognostic biomarkers of disease onset and severity.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, Ospedale Policlinico San Martino, University of Genova, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-0103537924; Fax: +39-0105556950
| | - Luana Orlando
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Marianna Gigliotti-De Fazio
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Dario Terranova
- Department of Clinical and Experimental Medicine, University of Messina, n. Viale Benedetto XV, n. 6, 98125 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|