1
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
2
|
Heidari Nejad S, Azzam O, Schlaich MP. Recent developments in the management of resistant hypertension: focus on endothelin receptor antagonists. Future Cardiol 2024; 20:435-445. [PMID: 38953510 PMCID: PMC11486316 DOI: 10.1080/14796678.2024.2367390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Resistant hypertension is characterized by the inability of guideline-recommended triple combination therapy to control blood pressure (BP) to target. It is associated with a significantly increased risk of adverse outcomes. Despite abundant preclinical evidence supporting the critical role of the endothelin pathway in resistant hypertension (RH), clinical implementation of endothelin antagonists for the treatment of hypertension was hindered by various factors. Recently, the novel dual endothelin-receptor antagonist aprocitentan was tested in individuals with resistant hypertension in the PRECISION trial and provided compelling evidence supporting both short and longer-term safety and clinically meaningful and sustained BP lowering efficacy. These findings resulted in the recent regulatory approval of aprocitentan by the FDA. Aprocitentan may be a particularly useful antihypertensive option for individuals with advanced age, chronic kidney disease, and albuminuria.
Collapse
Affiliation(s)
- Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
| | - Omar Azzam
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School – Royal Perth Hospital Unit & RPH Research Foundation, The University of Western Australia, Perth, Western Australia, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
- Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
3
|
Khojasteh SC, Argikar UA, Cheruzel L, Cho S, Crouch RD, Dhaware D, Heck CJS, Johnson KM, Kalgutkar AS, King L, Liu J, Ma B, Maw H, Miller GP, Seneviratne HK, Takahashi RH, Wang S, Wei C, Jackson KD. Biotransformation research advances - 2022 year in review. Drug Metab Rev 2023; 55:301-342. [PMID: 37737116 DOI: 10.1080/03602532.2023.2262161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/05/2023] [Indexed: 09/23/2023]
Abstract
This annual review is the eighth of its kind since 2016 (Baillie et al. 2016, Khojasteh et al. 2017, Khojasteh et al. 2018, Khojasteh et al. 2019, Khojasteh et al. 2020, Khojasteh et al. 2021, Khojasteh et al. 2022). Our objective is to explore and share articles which we deem influential and significant in the field of biotransformation.
Collapse
Affiliation(s)
- S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Lionel Cheruzel
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Rachel D Crouch
- Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN, USA
| | | | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, MD Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Lloyd King
- Quantitative Drug Discovery, UCB Biopharma UK, Slough UK
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Hlaing Maw
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of AR for Medical Sciences, Little Rock, AR, USA
| | | | - Ryan H Takahashi
- Drug Metabolism and Pharmacokinetics, Denali Therapeutics, South San Francisco, CA, USA
| | - Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc, South San Francisco, CA, USA
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen Inc, Cambridge, MA, USA
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Heidari Nejad S, Azzam O, Schlaich MP. Dual Endothelin Antagonism with Aprocitentan as a Novel Therapeutic Approach for Resistant Hypertension. Curr Hypertens Rep 2023; 25:343-352. [PMID: 37566184 PMCID: PMC10505105 DOI: 10.1007/s11906-023-01259-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE OF REVIEW: Resistant hypertension (RH) defined as uncontrolled blood pressure despite the use of a combination of a renin-angiotensin system blocker, a calcium channel blocker, and a diuretic at maximally tolerated doses is associated with a substantially increased risk of cardiovascular and renal events. Despite targeting relevant pathophysiological pathways contributing to elevated blood pressure, approximately 10-15% of hypertensive patients remain above recommended blood pressure targets. Further optimization of blood pressure control is particularly challenging in patient populations who frequently present with RH such as elderly and patients with chronic kidney disease, due to the unfavorable safety profile of the recommended fourth-line therapy with mineralocorticoid receptor antagonists. This review explores the potential role of endothelin antagonists as an alternative fourth-line therapy. RECENT FINDINGS: Despite the well-described role of the endothelin pathway in the pathogenesis of hypertension, it is currently not targeted therapeutically. Recently however, main outcome data from the PRECISION study, a randomized placebo-controlled phase 3 trial, in patients with RH on guideline-recommended standardized single-pill background therapy convincingly demonstrated the safety and blood pressure-lowering efficacy of the dual endothelin antagonist Aprocitentan. Findings from the phase 3 PRECISION study could signify a turning point in the utilization of endothelin receptor antagonists as a standard treatment for patients with RH.
Collapse
Affiliation(s)
- Sayeh Heidari Nejad
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Omar Azzam
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia
- Department of Nephrology, Royal Perth Hospital, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit and RPH Research Foundation, The University of Western Australia, Level 3, MRF Building, Rear 50 Murray St, Perth, WA, 6000, Australia.
- Department of Nephrology, Royal Perth Hospital, Perth, Australia.
- Department of Cardiology, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
5
|
New Dual Endothelin Receptor Antagonist Aprocitentan in Hypertension: A Systematic Review and Meta-Analysis. Curr Probl Cardiol 2023; 48:101686. [PMID: 36893968 DOI: 10.1016/j.cpcardiol.2023.101686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Hypertension is one of the most common disorders encountered, yet pharmacotherapy for resistant hypertension has limited effective options. Aprocitentan is postulated to be a novel anti-hypertensive. The main goal was to determine the effect of aprocitentan on blood pressure among patients with hypertension. A thorough search of five electronic databases, including PubMed Central, PubMed, EMBASE, Springer, and Google Scholar, was carried out. The study included nine articles with a total of 2024 participants. With doses exceeding 25 mg, plasma ET-1(endothelin-1) concentrations, which show ETB (Endothelin receptor type B) receptor antagonism, significantly rose. Aprocitentan significantly reduced systolic and diastolic blood pressure with both doses of 10mg and 25mg in patients with hypertension. Further research is warranted to evaluate the efficacy, safety, and long-term outcomes of aprocitentan and its synergistic effect with other anti-hypertensives.
Collapse
|
6
|
Salvador VD, Bakris GL. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 2022; 45:1918-1928. [PMID: 36167808 DOI: 10.1038/s41440-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Finding complementary compelling novel therapeutic agents for better control of blood pressure in people with resistant hypertension is moving into unchartered territory. The latest therapeutic developments explore approaches in the clinical arena that were either not examined or could only be examined in animal models two decades ago. Four main mechanisms have now been explored and operationalized in drug development: (a) mineralocorticoid receptor blockade using a nonsteroidal structure with many fewer side effects, (b) an aminopeptidase A inhibitor that has central effects on vasopressin, (c) a combined endothelin A and B receptor blocker and (d) an aldosterone synthase inhibitor devoid of glucocorticoid activity. All these agents are either completing Phase II development and starting Phase III or are involved in the ongoing recruitment of Phase III trials. Additionally, novel agents use antisense inhibition to block angiotensinogen development in the liver. These agents are discussed only for completeness, as they are still in Phase II trial development. Last, another agent that was initially being developed as an antihypertensive and once the data were reviewed by the company clearly showed efficacy as a heart failure agent was sacubitril/valsartan, which was ultimately approved. However, there are some discussions about reinvigorating the quest for an indication for hypertension, although no such steps have been formally initiated.
Collapse
Affiliation(s)
- Vincent D Salvador
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Krishnarao K, Bruno KA, Di Florio DN, Edenfield BH, Whelan ER, Macomb LP, McGuire MM, Hill AR, Ray JC, Cornell LF, Tan W, Geiger XJ, Salomon GR, Douglass EJ, Fairweather D, Yamani MH. Upregulation of Endothelin-1 May Predict Chemotherapy-Induced Cardiotoxicity in Women with Breast Cancer. J Clin Med 2022; 11:jcm11123547. [PMID: 35743613 PMCID: PMC9224558 DOI: 10.3390/jcm11123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
As survival in breast cancer patients from newer therapies increases, concerns for chemotherapy-induced cardiotoxicity (CIC) have offset some of these benefits, manifesting as a decline in left ventricular ejection fraction (LVEF). Patients receiving anthracycline-based chemotherapy followed by trastuzumab are at risk for CIC. Previous research evaluating whether clinical biomarkers predict cardiotoxicity has been inconsistent. Recently, angiotensin II type 1 receptor (ATR1) and endothelin 1 (ET1) have been shown to play a role in breast tumor growth. We evaluated ATR1 and ET1 expression in breast cancer tissue and its association with CIC. A total of 33 paraffin-embedded breast tissue specimens from women with breast cancer treated with anthracycline-based chemotherapy and trastuzumab were analyzed by immunohistochemistry (IHC) and qRT-PCR. We found that ET1 expression was increased in patients with an LVEF ≤ 50% (p = 0.032) with a lower LVEF correlating with higher ET1 expression (r = 0.377, p = 0.031). In patients with a change in LVEF of greater than 10%, greater ET1 expression was noted compared to those without a change in LVEF (p = 0.017). Increased ET1 expression in breast tumor tissue is associated with reduced LVEF. Future studies need to examine whether ET1 may be a tissue biomarker that helps predict the risk of developing CIC in women with breast cancer.
Collapse
Affiliation(s)
- Krithika Krishnarao
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Department of Cardiovascular Medicine, Ochsner Health, New Orleans, LA 70121, USA
- Correspondence: ; Tel.: +1-504-842-9780
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Molly M. McGuire
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Jordan C. Ray
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Lauren F. Cornell
- Department of Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (L.F.C.); (W.T.)
| | - Winston Tan
- Department of Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (L.F.C.); (W.T.)
| | | | - Gary R. Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Erika J. Douglass
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Mohamad H. Yamani
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| |
Collapse
|
8
|
Li KX, Wang ZC, Machuki JO, Li MZ, Wu YJ, Niu MK, Yu KY, Lu QB, Sun HJ. Benefits of Curcumin in the Vasculature: A Therapeutic Candidate for Vascular Remodeling in Arterial Hypertension and Pulmonary Arterial Hypertension? Front Physiol 2022; 13:848867. [PMID: 35530510 PMCID: PMC9075737 DOI: 10.3389/fphys.2022.848867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | | | - Meng-Zhen Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Jie Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Kai Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kang-Ying Yu
- Nursing School of Wuxi Taihu University, Wuxi, China
| | - Qing-Bo Lu
- School of Medicine, Southeast University, Nanjing, China
| | - Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
9
|
The Causal Relationship between Endothelin-1 and Hypertension: Focusing on Endothelial Dysfunction, Arterial Stiffness, Vascular Remodeling, and Blood Pressure Regulation. Life (Basel) 2021; 11:life11090986. [PMID: 34575135 PMCID: PMC8472034 DOI: 10.3390/life11090986] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Hypertension (HTN) is one of the most prevalent diseases worldwide and is among the most important risk factors for cardiovascular and cerebrovascular complications. It is currently thought to be the result of disturbances in a number of neural, renal, hormonal, and vascular mechanisms regulating blood pressure (BP), so crucial importance is given to the imbalance of a number of vasoactive factors produced by the endothelium. Decreased nitric oxide production and increased production of endothelin-1 (ET-1) in the vascular wall may promote oxidative stress and low-grade inflammation, with the development of endothelial dysfunction (ED) and increased vasoconstrictor activity. Increased ET-1 production can contribute to arterial aging and the development of atherosclerotic changes, which are associated with increased arterial stiffness and manifestation of isolated systolic HTN. In addition, ET-1 is involved in the complex regulation of BP through synergistic interactions with angiotensin II, regulates the production of catecholamines and sympathetic activity, affects renal hemodynamics and water–salt balance, and regulates baroreceptor activity and myocardial contractility. This review focuses on the relationship between ET-1 and HTN and in particular on the key role of ET-1 in the pathogenesis of ED, arterial structural changes, and impaired vascular regulation of BP. The information presented includes basic concepts on the role of ET-1 in the pathogenesis of HTN without going into detailed analyses, which allows it to be used by a wide range of specialists. Also, the main pathological processes and mechanisms are richly illustrated for better understanding.
Collapse
|