1
|
Ruud M, Frisk M, Melleby AO, Norseng PA, Mohamed BA, Li J, Aronsen JM, Setterberg IE, Jakubiczka J, van Hout I, Coffey S, Shen X, Nygård S, Lunde IG, Tønnessen T, Jones PP, Sjaastad I, Gullestad L, Toischer K, Dahl CP, Christensen G, Louch WE. Regulation of cardiomyocyte t-tubule structure by preload and afterload: Roles in cardiac compensation and decompensation. J Physiol 2024; 602:4487-4510. [PMID: 38686538 DOI: 10.1113/jp284566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.
Collapse
Affiliation(s)
- Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Joanna Jakubiczka
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Isabelle van Hout
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Sean Coffey
- Department of Medicine and HeartOtago, Dunedin School of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ståle Nygård
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Peter P Jones
- Department of Physiology, School of Biomedical Sciences and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Karl Toischer
- Department of Cardiology and Pneumology, Georg-August-University, Göttingen, Germany
| | - Cristen P Dahl
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Edwards SJ, Moth CW, Kim S, Brandon S, Zhou Z, Cobb CE, Hustedt EJ, Beth AH, Smith JA, Lybrand TP. Automated structure refinement for a protein heterodimer complex using limited EPR spectroscopic data and a rigid-body docking algorithm: a three-dimensional model for an ankyrin-CDB3 complex. J Phys Chem B 2014; 118:4717-26. [PMID: 24758720 PMCID: PMC4018176 DOI: 10.1021/jp4099705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
We report here specialized functions
incorporated recently in the
rigid-body docking software toolkit TagDock to utilize electron paramagnetic
resonance derived (EPR-derived) interresidue distance measurements
and spin-label accessibility data. The TagDock package extensions
include a custom methanethiosulfonate spin label rotamer library to
enable explicit, all-atom spin-label side-chain modeling and scripts
to evaluate spin-label surface accessibility. These software enhancements
enable us to better utilize the biophysical data routinely available
from various spin-labeling experiments. To illustrate the power and
utility of these tools, we report the refinement of an ankyrin:CDB3
complex model that exhibits much improved agreement with the EPR distance
measurements, compared to model structures published previously.
Collapse
Affiliation(s)
- Sarah J Edwards
- Department of Chemistry, ‡Department of Molecular Physiology & Biophysics, §Department of Biochemistry, ∥Department of Pharmacology, ⊥Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Sato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM, Delmar M. Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res 2011; 109:193-201. [PMID: 21617128 DOI: 10.1161/circresaha.111.247023] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE The early description of the intercalated disc defined 3 structures, all of them involved in cell-cell communication: desmosomes, gap junctions, and adherens junctions. Current evidence demonstrates that molecules not involved in providing a physical continuum between cells also populate the intercalated disc. Key among them is the voltage-gated sodium channel complex. An important component of this complex is the cytoskeletal adaptor protein Ankyrin-G (AnkG). OBJECTIVE To test the hypothesis that AnkG partners with desmosome and gap junction molecules and exerts a functional effect on intercellular communication in the heart. METHODS AND RESULTS We used a combination of microscopy, immunochemistry, patch-clamp, and optical mapping to assess the interactions between AnkG, Plakophilin-2, and Connexin43. Coimmunoprecipitation studies from rat heart lysate demonstrated associations between the 3 molecules. With the use of siRNA technology, we demonstrated that loss of AnkG expression caused significant changes in subcellular distribution and/or abundance of PKP2 and Connexin43 as well as a decrease in intercellular adhesion strength and electric coupling. Regulation of AnkG and of Na(v)1.5 by Plakophilin-2 was also demonstrated. Finally, optical mapping experiments in AnkG-silenced cells demonstrated a shift in the minimal frequency at which rate-dependence activation block was observed. CONCLUSIONS These experiments support the hypothesis that AnkG is a key functional component of the intercalated disc at the intersection of 3 complexes often considered independent: the voltage-gated sodium channel, gap junctions, and the cardiac desmosome. Possible implications to the pathophysiology of inherited arrhythmias (such as arrhythmogenic right ventricular cardiomyopathy) are discussed.
Collapse
Affiliation(s)
- Priscila Y Sato
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kim S, Brandon S, Zhou Z, Cobb CE, Edwards SJ, Moth CW, Parry CS, Smith JA, Lybrand TP, Hustedt EJ, Beth AH. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13-24. J Biol Chem 2011; 286:20746-57. [PMID: 21493712 DOI: 10.1074/jbc.m111.230326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li J, Kline CF, Hund TJ, Anderson ME, Mohler PJ. Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J Biol Chem 2010; 285:28723-30. [PMID: 20610380 DOI: 10.1074/jbc.m110.147868] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrin polypeptides are critical for normal membrane protein expression in diverse cell types, including neurons, myocytes, epithelia, and erythrocytes. Ankyrin dysfunction results in defects in membrane expression of ankyrin-binding partners (including ion channels, transporters, and cell adhesion molecules), resulting in aberrant cellular function and disease. Here, we identify a new role for ankyrin-B in cardiac cell biology. We demonstrate that cardiac sarcolemmal K(ATP) channels directly associate with ankyrin-B in heart via the K(ATP) channel alpha-subunit Kir6.2. We demonstrate that primary myocytes lacking ankyrin-B display defects in Kir6.2 protein expression, membrane expression, and function. Moreover, we demonstrate a secondary role for ankyrin-B in regulating K(ATP) channel gating. Finally, we demonstrate that ankyrin-B forms a membrane complex with K(ATP) channels and the cardiac Na/K-ATPase, a second key membrane transporter involved in the cardiac ischemia response. Collectively, our new findings define a new role for cardiac ankyrin polypeptides in regulation of ion channel membrane expression in heart.
Collapse
Affiliation(s)
- Jingdong Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|