1
|
Xu L, Yang Q, Zhou J. Mechanisms of Abnormal Lipid Metabolism in the Pathogenesis of Disease. Int J Mol Sci 2024; 25:8465. [PMID: 39126035 PMCID: PMC11312913 DOI: 10.3390/ijms25158465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Lipid metabolism is a critical component in preserving homeostasis and health, and lipids are significant chemicals involved in energy metabolism in living things. With the growing interest in lipid metabolism in recent years, an increasing number of studies have demonstrated the close relationship between abnormalities in lipid metabolism and the development of numerous human diseases, including cancer, cardiovascular, neurological, and endocrine system diseases. Thus, understanding how aberrant lipid metabolism contributes to the development of related diseases and how it works offers a theoretical foundation for treating and preventing related human diseases as well as new avenues for the targeted treatment of related diseases. Therefore, we discuss the processes of aberrant lipid metabolism in various human diseases in this review, including diseases of the cardiovascular system, neurodegenerative diseases, endocrine system diseases (such as obesity and type 2 diabetes mellitus), and other diseases including cancer.
Collapse
Affiliation(s)
| | | | - Jinghua Zhou
- School of Basic Medicine Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Li X, Lei ZC, Lo CY, Jan TY, Lau CW, Yao XQ. Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice. Acta Pharmacol Sin 2024; 45:975-987. [PMID: 38279042 PMCID: PMC11053128 DOI: 10.1038/s41401-024-01227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 μM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 μM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.
Collapse
Affiliation(s)
- Xiao Li
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen-Chuan Lei
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun Yin Lo
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz Yau Jan
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Qiang Yao
- School of Biomedical Sciences, Heart and Vascular Institute and Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Centre for Cell & Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Ashton AW. Preparing to strike: Acute events in signaling by the serpentine receptor for thromboxane A 2. Pharmacol Ther 2023:108478. [PMID: 37321373 DOI: 10.1016/j.pharmthera.2023.108478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPβ) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.
Collapse
Affiliation(s)
- Anthony W Ashton
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Rm 128, 100 E Lancaster Ave, Wynnewood, PA 19096, USA; Division of Perinatal Research, Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, St Leonards, NSW 2065, Australia.
| |
Collapse
|
4
|
Azzopardi D, Haswell LE, Frosina J, McEwan M, Gale N, Thissen J, Meichanetzidis F, Hardie G. Biomarkers of Exposure and Potential Harm in Exclusive Users of Nicotine Pouches and Current, Former, and Never Smokers: Protocol for a Cross-sectional Clinical Study. JMIR Res Protoc 2022; 11:e39785. [PMID: 36201395 PMCID: PMC9585440 DOI: 10.2196/39785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Tobacco harm reduction (THR) aims to reduce the health burden of cigarettes by encouraging smokers to switch to using alternative tobacco or nicotine products. Nicotine pouches (NPs) are smokeless, tobacco-free, oral products that may be beneficial as part of a THR strategy. Objective This 2-center, cross-sectional confinement study conducted in Denmark and Sweden aimed to determine whether biomarkers of exposure (BoEs) to tobacco toxicants and biomarkers of potential harm (BoPHs) in exclusive users of NPs show favorable differences compared with current smokers. Methods Participants were healthy NP users (target n=100) and current, former, or never smokers (target n=40 each), as confirmed by urinary cotinine and exhaled carbon monoxide concentrations. During a 24-hour confinement period, participants were asked to use their usual product (NP or cigarette) as normal, and BoEs and BoPHs were measured in blood and 24-hour urine samples, with compliance determined using anabasine, anatabine, and N-(2-cyanoethyl)valine. BoEs and BoPHs were compared between NP users and current, former, and never smokers. Urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (BoE to nicotine-derived nitrosamine ketone) and urinary 8-epi-prostaglandin F2α type III, exhaled nitric oxide, blood carboxyhemoglobin, white blood cell count, soluble intercellular adhesion molecule-1, and high-density lipoprotein cholesterol (BoPHs) were evaluated as primary outcomes. Other measures included urinary 11-dehydrothromboxane B2, forced expiratory volume, carotid intima-media thickness, self-reported quality of life, and oral health. Results The results of this study were received in mid-2022 and will be published in late 2022 to early 2023. Conclusions The results of this study will provide information on toxicant exposure and biomarkers associated with the development of smoking-related diseases among users of NPs compared with smokers, as well as on the potential role of NPs in THR. Trial Registration International Standard Randomised Controlled Trial Number (ISRCTN) ISRCTN16988167; https://www.isrctn.com/ISRCTN16988167 International Registered Report Identifier (IRRID) DERR1-10.2196/39785
Collapse
Affiliation(s)
- David Azzopardi
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| | | | - Justin Frosina
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| | - Michael McEwan
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| | - Nathan Gale
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| | - Jesse Thissen
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| | | | - George Hardie
- British American Tobacco (Investments) Limited, Southampton, United Kingdom
| |
Collapse
|
5
|
Rade JJ, Barton BA, Vasan RS, Kronsberg SS, Xanthakis V, Keaney JF, Hamburg NM, Kakouros N, Kickler TA. Association of Thromboxane Generation With Survival in Aspirin Users and Nonusers. J Am Coll Cardiol 2022; 80:233-250. [PMID: 35660296 DOI: 10.1016/j.jacc.2022.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Persistent systemic thromboxane generation, predominantly from nonplatelet sources, in aspirin (ASA) users with cardiovascular disease (CVD) is a mortality risk factor. OBJECTIVES This study sought to determine the mortality risk associated with systemic thromboxane generation in an unselected population irrespective of ASA use. METHODS Stable thromboxane B2 metabolites (TXB2-M) were measured by enzyme-linked immunosorbent assay in banked urine from 3,044 participants (mean age 66 ± 9 years, 53.8% women) in the Framingham Heart Study. The association of TXB2-M to survival over a median observation period of 11.9 years (IQR: 10.6-12.7 years) was determined by multivariable modeling. RESULTS In 1,363 (44.8%) participants taking ASA at the index examination, median TXB2-M were lower than in ASA nonusers (1,147 pg/mg creatinine vs 4,179 pg/mg creatinine; P < 0.0001). TXB2-M were significantly associated with all-cause and cardiovascular mortality irrespective of ASA use (HR: 1.96 and 2.41, respectively; P < 0.0001 for both) for TXB2-M in the highest quartile based on ASA use compared with lower quartiles, and remained significant after adjustment for mortality risk factors for similarly aged individuals (HR: 1.49 and 1.82, respectively; P ≤ 0.005 for both). In 2,353 participants without CVD, TXB2-M were associated with cardiovascular mortality in ASA nonusers (adjusted HR: 3.04; 95% CI: 1.29-7.16) but not in ASA users, while ASA use was associated with all-cause mortality in those with low (adjusted HR: 1.46; 95% CI: 1.14-1.87) but not elevated TXB2-M. CONCLUSIONS Systemic thromboxane generation is an independent risk factor for all-cause and cardiovascular mortality irrespective of ASA use, and its measurement may be useful for therapy modification, particularly in those without CVD.
Collapse
Affiliation(s)
- Jeffrey J Rade
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Bruce A Barton
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Shari S Kronsberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - John F Keaney
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Naomi M Hamburg
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nikolaos Kakouros
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
6
|
Zhou Y, Khan H, Xiao J, Cheang WS. Effects of Arachidonic Acid Metabolites on Cardiovascular Health and Disease. Int J Mol Sci 2021; 22:12029. [PMID: 34769460 PMCID: PMC8584625 DOI: 10.3390/ijms222112029] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Arachidonic acid (AA) is an essential fatty acid that is released by phospholipids in cell membranes and metabolized by cyclooxygenase (COX), cytochrome P450 (CYP) enzymes, and lipid oxygenase (LOX) pathways to regulate complex cardiovascular function under physiological and pathological conditions. Various AA metabolites include prostaglandins, prostacyclin, thromboxanes, hydroxyeicosatetraenoic acids, leukotrienes, lipoxins, and epoxyeicosatrienoic acids. The AA metabolites play important and differential roles in the modulation of vascular tone, and cardiovascular complications including atherosclerosis, hypertension, and myocardial infarction upon actions to different receptors and vascular beds. This article reviews the roles of AA metabolism in cardiovascular health and disease as well as their potential therapeutic implication.
Collapse
Affiliation(s)
- Yan Zhou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China;
| |
Collapse
|
7
|
Santos JD, Paulo M, Vercesi JA, Bendhack LM. Thromboxane-prostanoid receptor activation blocks ATP-sensitive potassium channels in rat aortas. Clin Exp Pharmacol Physiol 2021; 48:1537-1546. [PMID: 34329487 DOI: 10.1111/1440-1681.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/30/2022]
Abstract
K+ channel activation is one of the major mechanisms involved in vasodilation. Vasoconstrictor agonists such as angiotensin II promote ATP-dependent potassium channels (KATP ) dysfunction. This study evaluates whether thromboxane-prostanoid (TP receptor) activation by the agonist U46619 increases reactive oxygen species (ROS) production in rat aortas, which could contribute to KATP channel dysfunction and impaired NO-dependent vasodilation. TP receptor activation with the selective agonist U46619 increased ROS in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), but the TP receptor antagonist SQ29548 abolished this effect. ECs and VSMCs incubation with ROS scavengers like Tiron or PEG-Catalase impaired U46619-induced ROS production. U46619 at the concentrations of 0.1 and 1 µmol/L induced contractions with similar amplitude. KATP channel activation with pinacidil-induced relaxation was lower for the contractions induced with 0.1 or 1 µmol/L U46619 than with 10 nmol/L U46619. Acetylcholine-induced relaxation provided similar results. In aortas pre-contracted with 10 nmol/L U46619, neither Tiron (100 µmol/L) nor catalase (300 U/mL) affected pinacidil-induced relaxation. However, in aortas pre-contracted with 0.1 µmol/L U46619, catalase potentiated pinacidil-induced relaxation. Pinacidil potentiated acetylcholine-induced relaxation in aortas pre-contracted with 0.1 and 1 µmol/L U46619. Incubation with 10 nmol/L U46619 increased NO concentration in ECs. Taken together, these results show that high concentrations of the TP receptor agonist U46619 impair KATP channels, which is probably due to ROS production. It is likely that hydrogen peroxide is the ROS.
Collapse
MESH Headings
- Animals
- Rats
- KATP Channels/metabolism
- KATP Channels/agonists
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Receptors, Thromboxane/metabolism
- Receptors, Thromboxane/agonists
- Receptors, Thromboxane/antagonists & inhibitors
- Reactive Oxygen Species/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Vasodilation/drug effects
- Aorta/drug effects
- Aorta/metabolism
- Rats, Wistar
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Vasoconstrictor Agents/pharmacology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
Collapse
Affiliation(s)
- Jeimison D Santos
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michele Paulo
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Juliana A Vercesi
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lusiane M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Figurová D, Tokárová K, Greifová H, Knížatová N, Kolesárová A, Lukáč N. Inflammation, It's Regulation and Antiphlogistic Effect of the Cyanogenic Glycoside Amygdalin. Molecules 2021; 26:5972. [PMID: 34641516 PMCID: PMC8512454 DOI: 10.3390/molecules26195972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
The inflammatory reaction accompanies in part or in full any disease process in the vascularized metazoan. This complicated reaction is controlled by regulatory mechanisms, some of which produce unpleasant symptomatic manifestations of inflammation. Therefore, there has been an effort to develop selective drugs aimed at removing pain, fever, or swelling. Gradually, however, serious adverse side effects of such inhibitors became apparent. Scientific research has therefore continued to explore new possibilities, including naturally available substances. Amygdalin is a cyanogenic glycoside present, e.g., in bitter almonds. This glycoside has already sparked many discussions among scientists, especially about its anticancer potential and related toxic cyanides. However, toxicity at different doses made it generally unacceptable. Although amygdalin given at the correct oral dose may not lead to poisoning, it has not yet been accurately quantified, as its action is often affected by different intestinal microbial consortia. Its pharmacological activities have been studied, but its effects on the body's inflammatory response are lacking. This review discusses the chemical structure, toxicity, and current knowledge of the molecular mechanism of amygdalin activity on immune functions, including the anti-inflammatory effect, but also discusses inflammation as such, its mediators with diverse functions, which are usually targeted by drugs.
Collapse
Affiliation(s)
| | - Katarína Tokárová
- Department of Animal Physiology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia; (D.F.); (H.G.); (N.K.); (A.K.); (N.L.)
| | | | | | | | | |
Collapse
|
9
|
Camacho OM, Hedge A, Lowe F, Newland N, Gale N, McEwan M, Proctor C. Statistical analysis plan for "A randomised, controlled study to evaluate the effects of switching from cigarette smoking to using a tobacco heating product on health effect indicators in healthy subjects". Contemp Clin Trials Commun 2020; 17:100535. [PMID: 32072070 PMCID: PMC7013164 DOI: 10.1016/j.conctc.2020.100535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco harm reduction strategies aim to substitute smoking with potentially reduced risk products (PRRPs) such as e-cigarettes and tobacco-heating products (THPs). The health benefits of switching from smoking to PRRPs is unknown. A randomised controlled trial is being conducted to increase understanding of the health effects of switching from smoking to a THP in a 12-month long ambulatory study (ISRCTN81075760). Here we describe the study endpoints and the statistical analysis plan. Endpoints are divided into biomarkers of exposure (BoE) to tobacco smoke constituents and health effect indicators related to risk of lung cancer, cardiovascular and obstructive lung disease. These have been selected on the basis of extensive literature evidence. Three primary endpoints, augmentation index (risk factor for cardiovascular disease), total NNAL (linked to lung cancer) and 8-Epi-PGF2α type III (indicator of oxidative stress linked to various diseases), and multiple secondary endpoints will be analysed at 90, 180, and 360 days. Changes from baseline will be compared between study arms by specific contrasts in mixed models. Study wise multiple comparisons adjustments will be performed to account for multiplicity of timepoints and comparisons within timepoints. Generalisability of outcomes will be tested by a sensitivity analysis adjusting for age and gender. Importantly, an ancillary analysis will be performed to assess product compliance during the study based on plasma levels of CEVal, a surrogate marker for acrylonitrile exposure. The rationale underlying the selection of BoEs and health effect indicators, coupled with the statistical analysis plan will be central to understanding the potential health effects of replacing smoking with THP use for one year.
Collapse
Affiliation(s)
- Oscar M. Camacho
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Andrew Hedge
- Covance Clinical Research Unit Ltd, Springfield House, Hyde Street, Leeds, Yorkshire, LS2 9LH, UK
| | - Frazer Lowe
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nik Newland
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Nathan Gale
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Mike McEwan
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| | - Christopher Proctor
- British American Tobacco Investments Ltd, Regents Park Road, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
10
|
Famitafreshi H, Karimian M. Prostaglandins as the Agents That Modulate the Course of Brain Disorders. Degener Neurol Neuromuscul Dis 2020; 10:1-13. [PMID: 32021549 PMCID: PMC6970614 DOI: 10.2147/dnnd.s240800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Neurologic and neuropsychiatric diseases are associated with great morbidity and mortality. Prostaglandins (PGs) are formed by sequential oxygenation of arachidonic acid in physiologic and pathologic conditions. For the production of PGs cyclooxygenase is a necessary enzyme that has two isoforms, that are named COX-1 and COX-2. COX-1 produces type 1 prostaglandins and on the other hand, COX-2 produces type 2 prostaglandins. Recent studies suggest PGs abnormalities are present in a variety of neurologic and psychiatric disorders. In a disease state, type 2 prostaglandins are mostly responsible and type 1 PGs are not so important in the disease state. In this review, the importance of prostaglandins especially type 2 in brain diseases has been discussed and their possible role in the initiation and outcome of brain diseases has been assessed. Overall the studies suggest prostaglandins are the agents that modulate the course of brain diseases in a positive or negative manner. Here in this review article, the various aspects of PGs in the disease state have discussed. It appears more studies must be done to understand the exact role of these agents in the pathophysiology of brain diseases. However, the suppression of prostaglandin production may confer the alleviation of some brain diseases.
Collapse
Affiliation(s)
| | - Morteza Karimian
- Physiology Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Lagier D, Tonon D, Garrigue P, Guillet B, Giacomino L, Martin JC, Alessi MC, Bruder N, Velly LJ. Thromboxane-prostaglandin receptor antagonist, terutroban, prevents neurovascular events after subarachnoid haemorrhage: a nanoSPECT study in rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:42. [PMID: 30744667 PMCID: PMC6371436 DOI: 10.1186/s13054-019-2338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
Background Several lipid metabolites in cerebrospinal fluid are correlated with poor outcomes in aneurysmal subarachnoid haemorrhage. Most of these metabolites bind to ubiquitous thromboxane–prostaglandin (TP) receptors, causing vasoconstriction and inflammation. Here, we evaluated terutroban (TBN), a specific TP receptor antagonist, for the prevention of post-haemorrhage blood-brain barrier disruption, neuronal apoptosis and delayed cerebral hypoperfusion. Methods The rat double subarachnoid haemorrhage model was produced by twice injecting (days 1 and 2) autologous blood into the cisterna magna. Seventy-eight male Sprague-Dawley rats were assigned to experimental groups. Rats exposed to subarachnoid haemorrhage were allocated to no treatment (SAH group) or TBN treatment by gastric gavage during the first 5 days after haemorrhage (SAH+TBN group). Control rats received artificial cerebrospinal fluid injections (CSF group). Sham-operated rats with or without TBN administration were also studied. Body weight and Garcia neurological scores were assessed on day 2 and day 5. We used nanoscale single-photon emission computed tomography (nanoSPECT) to measure brain uptake of three radiolabelled agents: 99mTechnetium-diethylenetriaminepentacetate (99mTc-DTPA), which indicated blood-brain barrier permeability on day 3, 99mTechnetium-annexin V-128 (99mTc-Anx-V128), which indicated apoptosis on day 4, and 99mTechnetium-hexamethylpropyleneamineoxime (99mTc-HMPAO), which indicated cerebral perfusion on day 5. Basilar artery narrowing was verified histologically, and cerebral TP receptor agonists were quantified. Results 99mTc-DTPA uptake unveiled blood-brain barrier disruption in the SAH group. TBN mitigated this disruption in the brainstem area. 99mTc-Anx-V128 uptake was increased in the SAH group and TBN diminished this effect in the cerebellum. 99mTc-HMPAO uptake revealed a global decreased perfusion on day 5 in the SAH group that was significantly counteracted by TBN. TBN also mitigated basilar artery vasoconstriction, neurological deficits (on day 2), body weight loss (on day 5) and cerebral production of vasoconstrictors such as Thromboxane B2 and Prostaglandin F2α. Conclusions Based on in vivo nanoscale imaging, we demonstrated that TBN protected against blood-brain barrier disruption, exerted an anti-apoptotic effect and improved cerebral perfusion. Thus, TP receptor antagonists showed promising results in treating post-haemorrhage neurovascular events.
Collapse
Affiliation(s)
- David Lagier
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France. .,C2VN Inserm 1263, Inra 1260, Aix Marseille University, Marseille, France.
| | - David Tonon
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France.,C2VN Inserm 1263, Inra 1260, Aix Marseille University, Marseille, France
| | - Philippe Garrigue
- CERIMED (European Center for Research in Medical Imaging), Aix Marseille University, Marseille, France
| | - Benjamin Guillet
- CERIMED (European Center for Research in Medical Imaging), Aix Marseille University, Marseille, France
| | - Laura Giacomino
- Department of Anaesthesiology and Critical Care Medicine, INT (Institut de Neurosciences de la Timone), University Hospital Timone, Aix Marseille University, Marseille, France
| | | | | | - Nicolas Bruder
- Department of Anaesthesiology and Critical Care Medicine, University Hospital Timone, Marseille, France
| | - Lionel J Velly
- Department of Anaesthesiology and Critical Care Medicine, INT (Institut de Neurosciences de la Timone), University Hospital Timone, Aix Marseille University, Marseille, France
| |
Collapse
|
12
|
Liang C, Zhang Y, Zhuo D, Lo CY, Yu L, Lau CW, Kwan YW, Tse G, Huang Y, Yao X. Endothelial cell transient receptor potential channel C5 (TRPC5) is essential for endothelium-dependent contraction in mouse carotid arteries. Biochem Pharmacol 2018; 159:11-24. [PMID: 30414390 DOI: 10.1016/j.bcp.2018.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022]
Abstract
Augmented endothelium-dependent contractions (EDC) contributes to endothelial dysfunction and vascular disease progression. An early signal in EDC is cytosolic [Ca2+]i rise in endothelial cells, which stimulates the production of contractile prostanoids, leading to vascular contraction. In this study, the molecular identity of Ca2+-permeable channels in endothelial cells and its function were investigated. Vascular tension was measured by wire myograph. EDCs were elicited by acetylcholine (ACH) in the presence of NG-nitro-l-arginine methyl ester (L-NAME). [Ca2+]i was measured using a Ca2+-sensitive fluorescence dye. Enzyme Immunoassay (EIA) was used for prostaglandin measurement. Immunohistochemical staining found the expression of transient receptor potential channel C5 (TRPC5) in endothelial and smooth muscle cells of mouse carotid arteries. ACH-induced EDC in male mouse carotid arteries was found to be substantially reduced in TRPC5 knockout (KO) mice than in wild-type (WT) mice. TRPC5 inhibitors clemizole and ML204 also reduced the EDC. Furthermore, ACH-induced Ca2+ entry in endothelial cells was lower in TRPC5 KO mice than in WT mice. Moreover, the EDC was abolished by a cyclooxygenase-2 (COX-2) inhibitor NS-398, but not affected by a COX-1 inhibitor valeryl salicylate (VAS). Enzyme immunoassay results showed that TRPC5 stimulated the COX-2-linked production of prostaglandin F2α (PGF2α), prostaglandin E2 (PGE2), and prostaglandin D2 (PGD2). Exogeneous PGF2α, PGE2, and PGD2 could induce contractions in carotid arteries. Our present study demonstrated that TRPC5 in endothelial cells contributes to EDC by stimulating the production of COX-2-linked prostanoids. The finding extends our knowledge about EDC.
Collapse
Affiliation(s)
- Cai Liang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yunting Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Duan Zhuo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chun-Yin Lo
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Libo Yu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Chi-Wai Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Tse
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
13
|
Vascular dysfunction in the stroke-prone spontaneously hypertensive rat is dependent on constrictor prostanoid activity and Y chromosome lineage. Clin Sci (Lond) 2018; 132:131-143. [PMID: 29162746 DOI: 10.1042/cs20171291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022]
Abstract
Vascular dysfunction is a hallmark of hypertension and the strongest risk factor to date for coronary artery disease. As Y chromosome lineage has emerged as one of the strongest genetic predictors of cardiovascular disease risk to date, we investigated if Y chromosome lineage modulated this important facet in the stroke-prone spontaneously hypertensive rat (SHRSP) using consomic strains. Here, we show that vascular dysfunction in the SHRSP is attributable to differential cyclooxygenase (COX) activity with nitric oxide (NO) levels playing a less significant role. Measurement of prostacyclin, the most abundant product of COX in the vasculature, confirmed the augmented COX activity in the SHRSP aorta. This was accompanied by functional impairment of the vasodilatory prostacyclin (IP) receptor, while inhibition of the thromboxane (TP) receptor significantly ameliorated vascular dysfunction in the SHRSP, suggesting this is the downstream target responsible for constrictor prostanoid activity. Importantly, Y chromosome lineage was shown to modulate vascular function in the SHRSP through influencing COX activity, prostacyclin levels and IP dysfunction. Vascular dysfunction in the renal and intrarenal arteries was also found to be prostanoid and Y chromosome dependent. Interestingly, despite no apparent differences in agonist-stimulated NO levels, basal NO levels were compromised in the SHRSP aorta, which was also Y chromosome dependent. Thus, in contrast with the widely held view that COX inhibition is deleterious for the vasculature due to inhibition of the vasodilator prostacyclin, we show that COX inhibition abolishes vascular dysfunction in three distinct vascular beds, with IP dysfunction likely being a key mechanism underlying this effect. We also delineate a novel role for Y chromosome lineage in regulating vascular function through modulation of COX and basal NO levels.
Collapse
|
14
|
Seo MJ, Oh DK. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res 2017; 66:50-68. [DOI: 10.1016/j.plipres.2017.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 01/30/2023]
|
15
|
Fülöp TG, Metselaar JM, Storm G, Szebeni J. The role of thromboxane A2 in complement activation-related pseudoallergy. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractComplement activation-related pseudoallergy (CARPA) is a hypersensitivity reaction occurring upon intravenous administration of numerous liposomal therapeutics, other nonbiological complex drugs and biologicals. It has a complex molecular and cellular mechanism that involves the production, actions and interactions of numerous vasoactive mediators in blood, including thromboxane A
Collapse
|
16
|
Liang Z, Zheng Y, Wang J, Zhang Q, Ren S, Liu T, Wang Z, Luo D. Low molecular weight fucoidan ameliorates streptozotocin-induced hyper-responsiveness of aortic smooth muscles in type 1 diabetes rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:341-349. [PMID: 27346541 DOI: 10.1016/j.jep.2016.06.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Low molecular weight fucoidan (LMWF) was prepared from Laminaria japonica Areschoug, a popular seafood and medicinal plant consumed in Asia. Chinese have long been using it as a traditional medicine for curing hypertension and edema. AIM OF THE STUDY This study was intent to investigate the possible beneficial effect of LMWF on hyper-responsiveness of aortic smooth muscles instreptozotocin (STZ)-induced type 1 diabetic rats. MATERIALS AND METHODS Sprague-Dawley rats were made diabetic by injection of STZ, followed by the administration of LMWF (50 or 100mg/kg/day) or probucol (100mg/kg/day) for 12 weeks. Body weight, blood glucose level, basal blood pressure, serum lipid profiles, oxidative stress, prostanoids production, and vasoconstriction response of endothelium-denuded aorta rings to phenylephrine were measured by Real time-PCR, Western blots, ELISA assay, and force myograph, respectively. RESULTS LMWF (100mg/kg/day)-treated group showed robust improvements on STZ-induced body weight-loss, hypertension, and hyperlipidaemia as indicated by decreased serum level of total cholesterol, triglyceride, and low density lipoprotein cholesterol; while probucol, a lipid-modifying drug with antioxidant properties, displayed mild effects. In addition, LMWF appreciably ameliorated STZ-elicited hyper-responsiveness and oxidative stress in aortic smooth muscles as indicated by decreased superoxide level, increased glutathione content and higher superoxide dismutase activity. Furthermore, administration with LMWF dramatically prevented cyclooxygenase-2 stimulation and restored the up-regulation of thromboxane synthase and down-regulation of 6-keto-PGF1α (a stable metabolic product of prostaglandin I2) in the STZ-administered rats. CONCLUSION This study demonstrates for the first time that LMWF can protect against hyperlipidaemia, hypertension, and hyper-responsiveness of aortic smooth muscles in type 1 diabetic rat via, at least in part, amelioration of oxidative stress and restoration of prostanoids levels in aortic smooth muscles. Therefore, LMWF can be a potential adjuvant treatment against cardiovascular complications in type 1 diabetes.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/chemistry
- Antihypertensive Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiopathology
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/physiopathology
- Diabetic Angiopathies/blood
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/prevention & control
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Hyperlipidemias/blood
- Hyperlipidemias/physiopathology
- Hyperlipidemias/prevention & control
- Hypertension/blood
- Hypertension/physiopathology
- Hypertension/prevention & control
- Hypolipidemic Agents/chemistry
- Hypolipidemic Agents/pharmacology
- Lipids/blood
- Male
- Molecular Weight
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Oxidative Stress/drug effects
- Polysaccharides/chemistry
- Polysaccharides/pharmacology
- Prostaglandins/metabolism
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Streptozocin
- Superoxide Dismutase/metabolism
- Superoxides/metabolism
- Vasodilation/drug effects
- Weight Gain/drug effects
Collapse
Affiliation(s)
- Zhengyang Liang
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Jing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Shuang Ren
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Tiantian Liu
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiqiang Wang
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| | - Dali Luo
- Department of Pharmacology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
17
|
Romero M, Leon-Gomez E, Lobysheva I, Rath G, Dogné JM, Feron O, Dessy C. Effects of BM-573 on Endothelial Dependent Relaxation and Increased Blood Pressure at Early Stages of Atherosclerosis. PLoS One 2016; 11:e0152579. [PMID: 27019366 PMCID: PMC4809599 DOI: 10.1371/journal.pone.0152579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is considered to be an early event in atherosclerosis and plays a pivotal role in the development, progression and clinical complications of atherosclerosis. Previous studies have shown the beneficial effects of combined inhibition of thromboxane synthase and antagonism of thromboxane receptors by BM-573 on atherosclerosis; however our knowledge about the beneficial effects of BM-573 on endothelial function and increased blood pressure related to early stage of atherosclerosis is limited. In the present study, we investigated the effects of short-term (3 μM, 1 hour) and chronic (10 mg/L, 8 weeks) treatments with BM-573 on vasodilatory function, nitric oxide (NO) bioavailability, oxidative stress and systolic blood pressure in 15 weeks old apolipoprotein E-deficient (ApoE-KO) mice. ApoE-KO mice showed a reduced endothelium-derived relaxation. In addition, NO bioavailability was reduced and oxidative stress and blood pressure were increased in ApoE-KO mice versus wild-type mice. BM-573 treatments were able to improve the relaxation profile in ApoE-KO mice. Short-term effects of BM-573 were mainly mediated by an increased phosphorylation of both eNOS and Akt, whereas BM-573 in vivo treatment also reduced oxidative stress and restored NO bioavailability. In addition, chronic administration of BM-573 reduced systolic blood pressure in ApoE-KO mice. In conclusion, pharmacological modulation of TxA2 biosynthesis and biological activities by dual TP antagonism/TxAS inhibition with BM-573, already known to prevent plaque formation, has the potential to correct vasodilatory dysfunction at the early stages of atherosclerosis.
Collapse
Affiliation(s)
- Miguel Romero
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| | - Elvira Leon-Gomez
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Irina Lobysheva
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Géraldine Rath
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | | | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics (FATH), Institute of Experimental & Clinical Research (IREC), Université Catholique de Louvain (UCL) Medical School, Brussels, Belgium
- * E-mail: (MR); (CD)
| |
Collapse
|
18
|
Denniss SG, Ford RJ, Smith CS, Jeffery AJ, Rush JWE. Chronic in vivo or acute in vitro resveratrol attenuates endothelium-dependent cyclooxygenase-mediated contractile signaling in hypertensive rat carotid artery. J Appl Physiol (1985) 2016; 120:1141-50. [PMID: 26917696 DOI: 10.1152/japplphysiol.00675.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023] Open
Abstract
Exaggerated cyclooxygenase (COX) and thromboxane-prostanoid (TP) receptor-mediated endothelium-dependent contraction can contribute to endothelial dysfunction. This study examined the effect of resveratrol (RSV) on endothelium-dependent contraction and cell signaling in the common carotid artery (CCA) from spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Acetylcholine (Ach)-stimulated endothelium-dependent nitric oxide synthase (NOS)-mediated relaxation in precontracted SHR CCA was impaired (maximum 73 ± 6% vs. 87 ± 5% in WKY) (P < 0.05) by competitive COX-mediated contraction. Chronic (28-day) treatment in vivo (drinking water) with a ∼0.075 mg·kg(-1)·day(-1) RSV dose affected neither endothelium-dependent relaxation nor endothelium-dependent contraction and associated prostaglandin (PG) production evaluated in non-precontracted NOS-blocked CCA. In contrast, a chronic ∼7.5 mg·kg(-1)·day(-1) RSV dose improved endothelium-dependent relaxation (94 ± 6%) and attenuated endothelium-dependent contraction (58 ± 4% vs. 73 ± 5% in No-RSV) and PG production (183 ± 43 vs. 519 ± 93 pg/ml) in SHR CCA, while U46619-stimulated TP receptor-mediated contraction was unaffected. In separate acute in vitro experiments, 20-μM RSV preincubation attenuated endothelium-dependent contraction (6 ± 4% vs. 62 ± 2% in No Drug) and PG production (121 ± 15 vs. 491 ± 93 pg/ml) and attenuated U46619-stimulated contraction (134 ± 5% vs. 171 ± 4%) in non-precontracted NOS-blocked SHR CCA. Compound C, a known AMP-activated protein kinase (AMPK) inhibitor, did not prevent the RSV attenuating effect on Ach- and U46619-stimulated contraction but did prevent the RSV attenuating effect on PG production (414 ± 58 pg/ml). These data demonstrate that RSV can attenuate endothelium-dependent contraction both by suppressing arterial wall PG production, which may be partially mediated by AMPK, and by TP receptor hyporesponsiveness, which does not appear to be mediated by AMPK.
Collapse
Affiliation(s)
- Steven G Denniss
- Integrative Vascular Biology Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Rebecca J Ford
- Integrative Vascular Biology Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Christopher S Smith
- Integrative Vascular Biology Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew J Jeffery
- Integrative Vascular Biology Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - James W E Rush
- Integrative Vascular Biology Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
19
|
Zhao Y, Vanhoutte PM, Leung SWS. α1 -Adrenoceptor activation of PKC-ε causes heterologous desensitization of thromboxane receptors in the aorta of spontaneously hypertensive rats. Br J Pharmacol 2015; 172:3687-701. [PMID: 25857252 DOI: 10.1111/bph.13157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/19/2015] [Accepted: 03/31/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In the aorta of adult spontaneously hypertensive (SHR), but not in that of normotensive Wistar-Kyoto (WKY), rats, previous exposure to phenylephrine inhibits subsequent contractions to PGE2 . The present experiments were designed to examine the mechanism(s) underlying this inhibition. EXPERIMENTAL APPROACH Isometric tension was measured in isolated rings of SHR and WKY aortae. Gene expression and protein presence were measured by quantitative real-time PCR and Western blotting respectively. KEY RESULTS In aorta of 18 weeks SHR, but not age-matched WKY, pre-exposure to phenylephrine inhibited subsequent contractions to PGE2 that were mediated by thromboxane prostanoid (TP) receptors. This inhibition was not observed in preparations of pre-hypertensive 5-week-old SHR, and was significantly larger in those of 36- than 18-week-old SHR. Pre-exposure to the PKC activator, phorbol 12,13-dibutyrate, also inhibited subsequent contractions to PGE2 in SHR aortae. The selective inhibitor of PKC-ε, ε-V1-2, abolished the desensitization caused by pre-exposure to phenylephrine. Two molecular PKC bands were detected and their relative intensities differed in 36-week-old WKY and SHR vascular smooth muscle. The mRNA expressions of PKC-α, PKC-ε, PK-N2 and PKC-ζ and of G protein-coupled kinase (GRK)-2, GRK4 and β-arrestin2 were higher in SHR than WKY aortae. CONCLUSIONS AND IMPLICATIONS These experiments suggest that in the SHR but not the WKY aorta, α1 -adrenoceptor activation desensitizes TP receptors through activation of PKC-ε. This heterologous desensitization is a consequence of the chronic exposure to high arterial pressure.
Collapse
Affiliation(s)
- Yingzi Zhao
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Paul M Vanhoutte
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Susan W S Leung
- Department of Pharmacology & Pharmacy and Stake Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Vascular dysfunctions in the isolated aorta of double-transgenic hypertensive mice developing aortic aneurysm. Pflugers Arch 2014; 467:1945-63. [PMID: 25385304 DOI: 10.1007/s00424-014-1644-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023]
Abstract
Angiotensin-II and oxidative stress are involved in the genesis of aortic aneurysms, a phenomenon exacerbated by endothelial nitric oxide synthase (eNOS) deletion or uncoupling. The purpose of this work was to study the endothelial function in wild-type C57BL/6 (BL) and transgenic mice expressing the h-angiotensinogen and h-renin genes (AR) subjected to either a control, or a high-salt diet plus a treatment with a NO-synthase inhibitor, N-ω-nitro-L-arginine-methyl-ester (L-NAME; BLSL and ARSL). BLSL showed a moderate increase in blood pressure, while ARSL became severely hypertensive. Seventy-five percent of ARSL developed aortic aneurysms, characterized by major histo-morphological changes and associated with an increase in NADP(H) oxidase-2 (NOX2) expression. Contractile responses (KCl, norepinephrine, U-46619) were similar in the four groups of mice, and relaxations were not affected in BLSL and AR. However, in ARSL, endothelium-dependent relaxations (acetylcholine, UK-14304) were significantly reduced, and this dysfunction was similar in aortae without or with aneurysms. The endothelial impairment was unaffected by catalase, superoxide-dismutase mimetic, radical scavengers, cyclooxygenase inhibition, or TP-receptor blockade and could not be attributed to sGC oxidation. Thus, ARSL is a severe hypertension model developing aortic aneurysm. A vascular dysfunction, involving both endothelial (reduced role of NO) and smooth muscle cells, precedes aneurysms formation and, paradoxically, does not appear to involve oxidative stress.
Collapse
|
21
|
Santhosh KT, Sikarwar AS, Hinton M, Chelikani P, Dakshinamurti S. Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324. Br J Pharmacol 2014; 171:676-87. [PMID: 24490858 DOI: 10.1111/bph.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 09/21/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of the thromboxane A₂ (TP) receptor, resulting in agonist hypersensitivity and hyper-responsiveness, contributes to exaggerated vasoconstriction in the hypoxic pulmonary artery in neonatal persistent pulmonary hypertension. We previously reported that hypoxia inhibits TP receptor phosphorylation, causing desensitization. Hence, we examined the role of PKA-accessible serine residues in determining TP receptor affinity, using site-directed mutational analysis. EXPERIMENTAL APPROACH Vasoconstriction to a thromboxane mimetic and phosphorylation of TP receptor serine was examined in pulmonary arteries from neonatal swine with persistent pulmonary hypertension and controls. Effects of hypoxia were determined in porcine and human TP receptors. Human TPα serines at positions 324, 329 and 331 (C-terminal tail) were mutated to alanine and transiently expressed in HEK293T cells. Saturation binding and displacement kinetics of a TP antagonist and agonist were determined in porcine TP, wild-type human TPα and all TP mutants. Agonist-elicited calcium mobilization was determined for each TP mutant, in the presence of a PKA activator or inhibitor, and in hypoxic and normoxic conditions. KEY RESULTS The Ser324A mutant was insensitive to PKA activation and hypoxia, had a high affinity for agonist and increased agonist-induced calcium mobilization. Ser329A was no different from wild-type TP receptors. Ser331A was insensitive to hypoxia and PKA with a decreased agonist-mediated response. CONCLUSIONS AND IMPLICATIONS In hypoxic pulmonary hypertension, loss of site-specific phosphorylation of the TP receptor causes agonist hyper-responsiveness. Ser324 is the primary residue phosphorylated by PKA, which regulates TP receptor-agonist interactions. Ser331 mutation confers loss of TP receptor-agonist interaction, regardless of PKA activity.
Collapse
Affiliation(s)
- K T Santhosh
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
22
|
Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A₂, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res 2014; 102:9-16. [PMID: 24469536 DOI: 10.1093/cvr/cvu015] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent smooth muscle hyperpolarization (EDH) increasingly predominates over endothelium-derived nitric oxide (NO) as a participant in vasodilation as vessel size decreases. Its underlying nature is highly variable between vessel types, species, disease states, and exact experimental conditions, and is variably mediated by one or more transferable endothelium-derived hyperpolarizing factors and/or the electrotonic spread of endothelial hyperpolarization into the media via gap junctions. Although generally regarded (and studied) as a mechanism that is independent of NO and prostanoids, evidence has emerged that the endothelium-derived contracting factor and prostanoid thromboxane A2 can modulate several signalling components central to EDH, and therefore potentially curtail vasodilation through mechanisms that are distinct from those putatively involved in direct smooth muscle contraction. Notably, vascular production of thromboxane A2 is elevated in a number of cardiovascular disease states that promote endothelial dysfunction. This review will therefore discuss the mechanisms through which thromboxane A2 interacts with and modulates EDH, and will also consider the implications of such cross-talk in vasodilator control in health and disease.
Collapse
Affiliation(s)
- David C Ellinsworth
- Bristol Heart Institute, University of Bristol, Queens Building Level 7, Upper Maudlin St, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK
| | | | | | | |
Collapse
|
23
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
24
|
Matsumoto T, Watanabe S, Kawamura R, Taguchi K, Kobayashi T. Enhanced uridine adenosine tetraphosphate-induced contraction in renal artery from type 2 diabetic Goto-Kakizaki rats due to activated cyclooxygenase/thromboxane receptor axis. Pflugers Arch 2013; 466:331-42. [PMID: 23900807 DOI: 10.1007/s00424-013-1330-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022]
Abstract
The dinucleotide uridine adenosine tetraphosphate (Up4A), which has both purine and pyrimidine moieties, was reported as a novel endothelium-derived contracting factor. Recently, growing evidence has suggested that Up4A plays an important role in regulation of the cardiovascular function. We previously demonstrated that Up4A-induced vasoconstrictions are altered in arteries from DOCA-salt hypertensive rats. We have assessed responses to Up4A shown by renal arteries from type 2 diabetic Goto-Kakizaki (GK) rats (42-46 weeks old) and identified the molecular mechanisms involved. Concentration-dependent contractions to Up4A were greater in renal arterial rings from the GK than age-matched control Wistar group. In both groups, the inhibition of nitric oxide synthase (with N (G)-nitro-L-arginine) increased the response to Up4A, whereas the inhibition of cyclooxygenase (COX) (with indomethacin) decreased the response. Specific inhibitors of COX-1 (valeroyl salicylate) and COX-2 (NS398), a thromboxane (TX) receptor (TP) antagonist (SQ29548), and P2 receptor antagonist (suramin) also decreased the response to Up4A. Protein expressions of COXs in renal arteries were greater in the GK than Wistar group. The production of TXB2 (a metabolite of TXA2) by Up4A did not differ between these groups. Concentration-dependent contractions to U46619, an agonist of the TP receptor, were greater in renal arteries from the GK than Wistar group. The expression of P2X1 and P2Y2 receptors did not differ between these groups. These results suggest that enhancement of the Up4A-induced contraction in renal arteries from GK rats may be attributable to the increased activation of COXs/TP receptor signaling.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | | | | | | | | |
Collapse
|
25
|
Capodanno D, Ferreiro JL, Angiolillo DJ. Antiplatelet therapy: new pharmacological agents and changing paradigms. J Thromb Haemost 2013; 11 Suppl 1:316-29. [PMID: 23809135 DOI: 10.1111/jth.12219] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/10/2013] [Indexed: 11/28/2022]
Abstract
Recurrent atherothrombotic events in patients with acute coronary syndromes (ACS) and/or those undergoing percutaneous coronary intervention (PCI) are essentially platelet-driven processes, underscoring the need for effective pharmacological platelet inhibition. Dual antiplatelet therapy with aspirin and clopidogrel has been, for over a decade, the mainstay of antiplatelet management in ACS/PCI. However, atherothrombotic events continue to occur in a relevant proportion of subjects despite the benefit of this combination, which has led to the clinical development of newer and more potent antiplatelet drugs. Two of these, prasugrel and ticagrelor, have been recently approved for clinical use. The scope of this manuscript is to provide an up-to-date overview on new antiplatelet drugs in the setting of ACS and PCI, including the most recent advances on newly approved agents as well as on emerging compounds in clinical development.
Collapse
Affiliation(s)
- D Capodanno
- Ferrarotto Hospital, University of Catania, Catania, Italy
| | | | | |
Collapse
|
26
|
Liang CF, Liu JT, Wang Y, Xu A, Vanhoutte PM. Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 2013; 33:777-84. [PMID: 23413427 DOI: 10.1161/atvbaha.112.301087] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To analyze the role of toll-like receptor 4 in modulating metabolism and endothelial function. APPROACH AND RESULTS Type 2 diabetic mice with mutated toll-like receptor 4 (DWM) were protected from hyperglycemia and hypertension, despite an increased body weight. Isometric tension was measured in arterial rings with endothelium. Relaxations to acetylcholine were blunted in aortae and mesenteric arteries of Lepr(db/db) mice, but not in DWM mice; the endothelial NO synthase dimer/monomer ratio and endothelial NO synthase phosphorylation levels were higher in DWM preparations. These differences were abolished by apocynin. Contractions to acetylcholine (in the presence of L-NAME) were larger in carotid arteries from Lepr(db/db) mice than from DWM mice and were inhibited by indomethacin and SC560, demonstrating involvement of cyclooxygenase-1. The release of 6-ketoprostaglandin F1α was lower in DWM mice arteries, implying lower cyclooxygenase-1 activity. Apocynin, manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin, catalase, and diethyldithiocarbamate inhibited endothelium-dependent contractions. The mRNA and protein levels of NADPH oxidase isoforms NOX1 and NOX4 were downregulated in DWM mice arteries. The in vivo and in vitro administration of lipopolysaccharide caused endothelial dysfunction in the arteries of wild-type, but not toll-like receptor 4-mutated mice. CONCLUSIONS Toll-like receptor 4 plays a key role in obesity and diabetes-associated endothelial dysfunction by increasing oxidative stress.
Collapse
Affiliation(s)
- Chao-Fan Liang
- Department of Pharmacology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | |
Collapse
|
27
|
Gachet C. Les mécanismes moléculaires de l’activation plaquettaire. BULLETIN DE L ACADEMIE NATIONALE DE MEDECINE 2013. [DOI: 10.1016/s0001-4079(19)31591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
|
29
|
Abstract
The present review first summarizes the complex chain of events, in endothelial and vascular smooth muscle cells, that leads to endothelium-dependent relaxations (vasodilatations) due to the generation of nitric oxide (NO) by endothelial nitric oxide synthase (eNOS) and how therapeutic interventions may improve the bioavailability of NO and thus prevent/cure endothelial dysfunction. Then, the role of other endothelium-derived mediators (endothelium-derived hyperpolarizing (EDHF) and contracting (EDCF) factors, endothelin-1) and signals (myoendothelial coupling) is summarized also, with special emphasis on their interaction(s) with the NO pathway, which make the latter not only a major mediator but also a key regulator of endothelium-dependent responses.
Collapse
|
30
|
Kauffenstein G, Laher I, Matrougui K, Guérineau NC, Henrion D. Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 2012; 95:223-32. [PMID: 22637750 DOI: 10.1093/cvr/cvs152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blood flow autoregulation results from the ability of resistance arteries to reduce or increase their diameters in response to changes in intravascular pressure. The mechanism by which arteries maintain a constant blood flow to organs over a range of pressures relies on this myogenic response, which defines the intrinsic property of the smooth muscle to contract in response to stretch. The resistance to flow created by myogenic tone (MT) prevents tissue damage and allows the maintenance of a constant perfusion, despite fluctuations in arterial pressure. Interventions targeting MT may provide a more rational therapeutic approach in vascular disorders, such as hypertension, vasospasm, chronic heart failure, or diabetes. Despite its early description by Bayliss in 1902, the cellular and molecular mechanisms underlying MT remain poorly understood. We now appreciate that MT requires a complex mechanotransduction converting a physical stimulus (pressure) into a biological response (change in vessel diameter). Although smooth muscle cell depolarization and a rise in intracellular calcium concentration are recognized as cornerstones of the myogenic response, the role of wall strain-induced formation of vasoactive mediators is less well established. The vascular system expresses a large variety of Class 1 G protein-coupled receptors (GPCR) activated by an eclectic range of chemical entities, including peptides, lipids, nucleotides, and amines. These messengers can function in blood vessels as vasoconstrictors. This review focuses on locally generated GPCR agonists and their proposed contributions to MT. Their interplay with pivotal G(q-11) and G(12-13) protein signalling is also discussed.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM 1083, Université d'Angers, France
| | | | | | | | | |
Collapse
|
31
|
Vitamin D deficiency-induced hypertension is associated with vascular oxidative stress and altered heart gene expression. J Cardiovasc Pharmacol 2012; 58:65-71. [PMID: 21499117 DOI: 10.1097/fjc.0b013e31821c832f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vitamin D deficiency (VDD) is associated with an increased cardiovascular risk. We investigated the effect of VDD on the cardiovascular system of growing male rats fed with a vitamin D-deficient diet. Using isolated rat aorta, we assessed both superoxide anion and endothelial-dependent relaxations. Microarray technology was used to identify changes induced by VDD in cardiac gene expression. Compared with control, VDD increased systolic blood pressure (P < 0.05) and superoxide anion production in the aortic wall (P < 0.05) and tended to increase serum levels of angiotensin II and atrial natriuretic peptide (P < 0.15). However, VDD slightly improved maximal relaxation to acetylcholine from 75 % ± 3% to 83% ± 2% (P < 0.05). Incubation of aortic rings either with nitro-l-arginine methyl ester (l-NAME) or catalase did not eliminate the enhancement of endothelial-mediated relaxation observed in vitamin D-deficient rats. Only incubation with indometacin or calcium-activated potassium channels blockers suppressed this difference. Compared with control, the expression of 51 genes showed different expression, including several genes involved in the regulation of oxidative stress and myocardial hypertrophy. In conclusion, VDD in early life increases arterial blood pressure, promotes vascular oxidative stress, and induces changes in cardiac gene expression. However, the endothelial-mediated regulation of vasomotor tone is maintained throughout the enhancement of an NO-independent compensatory pathway.
Collapse
|
32
|
Johnston-Cox HA, Koupenova M, Ravid K. A2 adenosine receptors and vascular pathologies. Arterioscler Thromb Vasc Biol 2012; 32:870-8. [PMID: 22423039 PMCID: PMC5755359 DOI: 10.1161/atvbaha.112.246181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease, a leading cause of death and morbidity, is regulated, among various factors, by inflammation. The level of the metabolite adenosine is augmented under stress, including inflammatory, hypoxic, or injurious events. Adenosine has been shown to affect various physiological and pathological processes, largely through 1 or more of its 4 types of receptors: the A1 and A3 adenylyl cyclase inhibitory receptors and the A2A and A2B adenylyl cyclase stimulatory receptors. This article focuses on reviewing common and distinct effects of the 2 A2-type adenosine receptors on vascular disease and the mechanisms involved. Understanding the pathogenesis of vascular disease mediated by these receptors is important to the development of therapeutics and to the prevention and management of disease.
Collapse
Affiliation(s)
- Hillary A. Johnston-Cox
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| | - Milka Koupenova
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
33
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
34
|
Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 2012; 164:894-912. [PMID: 21323907 DOI: 10.1111/j.1476-5381.2011.01276.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelium-dependent contractions contribute to endothelial dysfunction in various animal models of aging, diabetes and cardiovascular diseases. In the spontaneously hypertensive rat, the archetypal model for endothelium-dependent contractions, the production of the endothelium-derived contractile factors (EDCF) involves an increase in endothelial intracellular calcium concentration, the production of reactive oxygen species, the predominant activation of cyclooxygenase-1 (COX-1) and to a lesser extent that of COX-2, the diffusion of EDCF towards the smooth muscle cells and the subsequent stimulation of their thromboxane A2-endoperoxide TP receptors. Endothelium-dependent contractions are also observed in various models of hypertension, aging and diabetes. They generally also involve the generation of COX-1- and/or COX-2-derived products and the activation of smooth muscle TP receptors. Depending on the model, thromboxane A(2), PGH(2), PGF(2α), PGE(2) and paradoxically PGI(2) can all act as EDCFs. In human, the production of COX-derived EDCF is a characteristic of the aging and diseased blood vessels, with essential hypertension causing an earlier onset and an acceleration of this endothelial dysfunction. As it has been observed in animal models, COX-1, COX-2 or both isoforms can contribute to these endothelial dysfunctions. Since in most cases, the activation of TP receptors is the common downstream effector, selective antagonists of this receptor should curtail endothelial dysfunction and be of therapeutic interest in the treatment of cardiovascular disorders.
Collapse
|
35
|
Aging-shifted prostaglandin profile in endothelium as a factor in cardiovascular disorders. J Aging Res 2012; 2012:121390. [PMID: 22500225 PMCID: PMC3303603 DOI: 10.1155/2012/121390] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/10/2011] [Accepted: 10/28/2011] [Indexed: 12/31/2022] Open
Abstract
Age-associated endothelium dysfunction is a major risk factor for the development of cardiovascular diseases. Endothelium-synthesized prostaglandins and thromboxane are local hormones, which mediate vasodilation and vasoconstriction and critically maintain vascular homeostasis. Accumulating evidence indicates that the age-related changes in endothelial eicosanoids contribute to decline in endothelium function and are associated with pathological dysfunction. In this review we summarize currently available information on aging-shifted prostaglandin profiles in endothelium and how these shifts are associated with cardiovascular disorders, providing one molecular mechanism of age-associated endothelium dysfunction and cardiovascular diseases.
Collapse
|
36
|
Ma D, Assumpção TCF, Li Y, Andersen JF, Ribeiro J, Francischetti IMB. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI. Thromb Haemost 2011; 107:111-23. [PMID: 22159626 DOI: 10.1160/th11-10-0685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/26/2011] [Indexed: 02/05/2023]
Abstract
Salivary glands from haematophagous animals express a notable diversity of negative modulators of platelet function. Triplatin is an inhibitor of collagen-induced platelet aggregation which has been described as an antagonist of glycoprotein VI (GPVI). Because triplatin displays sequence homology to members of the lipocalin family of proteins, we investigated whether triplatin mechanism of action could be explained by interaction with pro-haemostatic prostaglandins. Our results demonstrate that triplatin inhibits platelet aggregation induced by low doses of collagen, thromboxane A2 (TXA(2)) mimetic (U46619), and arachidonic acid (AA). On the other hand, it does not inhibit platelet aggregation by convulxin, PMA, or low-dose ADP. Isothermal titration calorimetry (ITC) revealed that triplatin binds AA, cTXA(2), TXB(2), U46619 or prostaglandin (PG)H(2) mimetic (U51605). Consistent with its ligand specificity, triplatin induces relaxation of rat aorta contracted with U46619. Triplatin also interacts with PGF(2α) and PGJ(2), but not with leukotrienes, AA or biogenic amines. Surface plasmon resonance experiments failed to demonstrate interaction of triplatin with GPVI; it also did to inhibit platelet adhesion to fibrillar or soluble collagen. Because triplatin displays sequence similarity to apolipoprotein D (ApoD) - a lipocalin associated with high-density lipoprotein, ApoD was tested as a putative TXA(2)-binding molecule. ITC failed to demonstrate binding of ApoD to all prostanoids described above, or to AA. Furthermore, ApoD was devoid of inhibitory properties towards platelets activation by AA, collagen, or U46619. In conclusion, triplatin mechanism of action has been elucidated without ambiguity as a novel TXA(2)- and PGF(2α)- binding protein. It conceivably blocks platelet aggregation and vasoconstriction, thus contributing to successful blood feeding at the vector-host interface.
Collapse
Affiliation(s)
- Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
|
40
|
Abstract
Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, 153 Johnson Pavilion, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
41
|
Johnston-Cox HA, Ravid K. Adenosine and blood platelets. Purinergic Signal 2011; 7:357-65. [PMID: 21484090 DOI: 10.1007/s11302-011-9220-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/19/2011] [Indexed: 02/07/2023] Open
Abstract
Adenosine is an important regulatory metabolite and an inhibitor of platelet activation. Adenosine released from different cells or generated through the activity of cell-surface ectoenzymes exerts its effects through the binding of four different G-protein-coupled adenosine receptors. In platelets, binding of A(2) subtypes (A(2A) or A(2B)) leads to consequent elevation of intracellular cyclic adenosine monophosphate, an inhibitor of platelet activation. The significance of this ligand and its receptors for platelet activation is addressed in this review, including how adenosine metabolism and its A(2) subtype receptors impact the expression and activity of adenosine diphosphate receptors. The expression of A(2) adenosine receptors is induced by conditions such as oxidative stress, a hallmark of aging. The effect of adenosine receptors on platelet activation during aging is also discussed, as well as potential therapeutic applications.
Collapse
Affiliation(s)
- Hillary A Johnston-Cox
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, and Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, CVI, 700 Albany St., Boston, MA, 02118, USA
| | | |
Collapse
|
42
|
Huang RY, Chen GG. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:158-69. [PMID: 21147199 DOI: 10.1016/j.bbcan.2010.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is a major cause of mortality and morbidity worldwide. Cyclooxygenase (COX) and its derived prostanoids, mainly including prostaglandin E2 (PGE2), thromboxane A2 (TxA2) and prostacyclin (PGI2), have well-known roles in cardiovascular disease and cancer, both of which are associated with cigarette smoking. This article is focused on the role of COX-2 pathway in smoke-related pathologies and cancer. Cigarette smoke exposure can induce COX-2 expression and activity, increase PGE2 and TxA2 release, and lead to an imbalance in PGI2 and TxA2 production in favor of the latter. It exerts pro-inflammatory effects in a PGE2-dependent manner, which contributes to carcinogenesis and tumor progression. TxA2 mediates other diverse biologic effects of cigarette smoking, such as platelet activation, cell contraction and angiogenesis, which may facilitate tumor growth and metastasis in smokers. Among cigarette smoke components, nicotine and its derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are the most potent carcinogens. COX-2 and PGE2 have been shown to play a pivotal role in many cancers associated with cigarette smoking, including cancers of lung, gastric and bladder, while the information for the role of TxA2 and PGI2 in smoke-associated cancers is limited. Recent findings from our group have revealed how NNK influences the TxA2 to promote the tumor growth. Better understanding in the above areas may help to generate new therapeutic protocols or to optimize the existing treatment strategy.
Collapse
Affiliation(s)
- Run-Yue Huang
- Department of Surgery, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|
43
|
Assumpção TCF, Alvarenga PH, Ribeiro JMC, Andersen JF, Francischetti IMB. Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 2010; 285:39001-12. [PMID: 20889972 DOI: 10.1074/jbc.m110.152835] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA(2), TXA(2) mimetic (U-46619), TXB(2), PGH(2) mimetic (U-51605), PGD(2,) PGJ(2), and PGF(2α). It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE(1), PGE(2), 8-iso-PGF(2α), prostacyclin), leukotrienes (e.g. LTB(4), LTC(4), LTD(4), LTE(4)), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF(2α) and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA(2) antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg(39) and Gln(135) in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation.
Collapse
Affiliation(s)
- Teresa C F Assumpção
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-8132, USA
| | | | | | | | | |
Collapse
|
44
|
Félétou M, Köhler R, Vanhoutte PM. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr Hypertens Rep 2010; 12:267-75. [PMID: 20532699 PMCID: PMC2910890 DOI: 10.1007/s11906-010-0118-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase-soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | - Ralf Köhler
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul M. Vanhoutte
- Department Pharmacology and Pharmacy, Li Ka Shing Faculty Medicine, University of Hong Kong, 22 Sassoon Road, Hong Kong, China
- Department BIN Fusion Technology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
45
|
Highlighted Meetings Series: A New Venture. J Cardiovasc Pharmacol 2010. [DOI: 10.1097/fjc.0b013e3181d7a182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Félétou M, Huang Y, Vanhoutte PM. Vasoconstrictor prostanoids. Pflugers Arch 2010; 459:941-50. [PMID: 20333529 DOI: 10.1007/s00424-010-0812-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/15/2010] [Accepted: 02/18/2010] [Indexed: 01/20/2023]
Abstract
In cardiovascular diseases and during aging, endothelial dysfunction is due in part to the release of endothelium-derived contracting factors that counteract the vasodilator effect of the nitric oxide. Endothelium-dependent contractions involve the activation of endothelial cyclooxygenases and the release of various prostanoids, which activate thromboxane prostanoid (TP) receptors of the underlying vascular smooth muscle. The stimulation of TP receptors elicits not only the contraction and the proliferation of vascular smooth muscle cells but also diverse physiological/pathophysiological reactions, including platelet aggregation and activation of endothelial inflammatory responses. TP receptor antagonists curtail endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and prevent vascular inflammation.
Collapse
|
47
|
Cohen RA, Feletou M, Vanhoutte PM, Verbeuren TJ. TP receptors and oxidative stress hand in hand from endothelial dysfunction to atherosclerosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:85-106. [PMID: 21081216 PMCID: PMC3004095 DOI: 10.1016/b978-0-12-385061-4.00004-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thromboxane A(2) and the activation of TP receptors that it causes play an important role in platelet aggregation and therefore in thrombosis. However, TP receptors are also involved in the pathologies of the vascular wall including impaired endothelium-dependent vasodilation, increased oxidant generation, and increased expression of adhesion molecules. The beneficial effects of TP antagonists on the vascular wall attenuate these features of vascular disease. They are not shared by aspirin. In fact, TP antagonists are active in patients treated with aspirin, indicating that their potential beneficial effects are mediated by mechanisms different from the antithrombotic actions of aspirin. Our studies have demonstrated the vascular benefits of TP antagonists in experimental animals, particularly in models of diabetes mellitus, in which elevated levels of eicosanoids play a role not only in vascular pathologies but also in those of the kidney and other tissues. They suggest that TP blockade protects against fundamental and widespread tissular dysfunction associated with metabolic disease including hyperlipidemia and hyperglycemia. TP receptor antagonists represent a promising avenue for the prevention of vascular disease in part because of these pleiotropic actions that extend beyond their antithrombotic properties.
Collapse
Affiliation(s)
- Richard A. Cohen
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine
| | - Michel Feletou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | - Paul M. Vanhoutte
- Department Pharmacology and Pharmacy, Li Ka Shing Faculty Medicine, University of Hong Kong, Hong Kong, China and Department BIN Fusion Technology, Chonbuk National University, Jeonju, Korea
| | - Tony J. Verbeuren
- Department of Angiology, Institut de Recherches Servier, Suresnes, France,Correspondence to: Dr Tony J. Verbeuren, Department of Angiology, Institut de Recherches Servier, 11 rue des Moulineaux, Suresnes, France., Tel:
| |
Collapse
|