1
|
Estrogen Enhances The Microvascular Reactivity Through Rhoa-Rock Pathway In Female Mice During Hemorrhagic Shock. Shock 2021; 56:611-620. [PMID: 33756501 DOI: 10.1097/shk.0000000000001776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ABSTRACT Vascular hypo-reactivity plays a critical role inducing organ injury during hemorrhagic shock. 17β-estradiol (E2) can induce vasodilation to increase blood flow in various vascular beds. This study observed whether E2 can restore vascular hypo-reactivity induced by hemorrhagic shock, and whether E2 effects are associated with RhoA - Rho kinase (ROCK)- myosin light chain kinase phosphatase (MLCP) pathway. The hemorrhagic shock model (40 ± 2 mmHg for 1 h, resuscitation for 4 h) was established in ovary intact sham operation (OVI), ovariectomized (OVX) and OVX plus E2 supplement female mice. Intestinal microvascular loop was used to assess blood flow in vivo, mRNA expression and vascular reactivity in vitro. Hemorrhagic shock significantly reduced norepinephrine microvascular reactivity. Decreased microvascular reactivity was exacerbated by OVX and reversed by E2 supplement. U-46619 (RhoA agonist) increased microvascular reactivity, and C3 transferase (an ADP ribosyl transferase that selectively induces RhoA ribosylation) or Y-27632 (ROCK inhibitor) inhibited sham mice microvascular reactivity. Similarly, U-46619 increased microvascular reactivity in OVI and OVX mice following hemorrhagic shock, which was abolished by Y-27632 or concomitant incubation of okadaic acid (OA) (MLCP inhibitor) and Y-27632. In OVX plus E2 supplement mice with hemorrhagic shock, Y-27632 inhibited microvascular reactivity, which was abolished by concomitant U-46619 application. Lastly, hemorrhagic shock remarkably decreased intestinal loop blood flow, RhoA and ROCK mRNA expressions in vascular tissues in OVX females, but not in OVI females, which were reversed by E2 supplement. These results indicate that estrogen improves microvascular reactivity during hemorrhagic shock, and RhoA-ROCK signaling pathway may mediate E2 effects.
Collapse
|
2
|
Dai W, Shi J, Carreno J, Hale SL, Kloner RA. Improved Long-term Survival with Remote Limb Ischemic Preconditioning in a Rat Fixed-Pressure Hemorrhagic Shock Model. Cardiovasc Drugs Ther 2020; 33:139-147. [PMID: 30747397 DOI: 10.1007/s10557-019-06860-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We investigated whether bilateral, lower limb remote ischemic preconditioning (RIPC) improved long-term survival using a rat model of hemorrhagic shock/resuscitation. METHODS Rats were anesthetized, intubated and ventilated, and randomly assigned to RIPC, induced by inflating bilateral pressure cuffs around the femoral arteries to 200 mmHg for 5 min, followed by 5-min release of the cuffs (repeated for 4 cycles), or control group (cuffs were inflated to 30 mmHg). Hemorrhagic shock was induced by withdrawing blood to a fixed mean blood pressure of 30 mmHg for 30 min, followed by 30 min of resuscitation with shed blood. Rats remained anesthetized for 1 h during which hemodynamics were monitored then they were allowed to survive for 6 weeks. RESULTS The percentage of estimated total blood volume withdrawn to maintain a level of 30 mmHg was similar in both groups. RIPC significantly increased survival at 6 weeks: 5 of 27 (19%) rats in the control group and 13 of 26 (50%; p = 0.02) rats in the RIPC group survived. Blood pressure was higher in the RIPC group. The diastolic internal dimension of the left ventricle, an indicator of circulating intravascular blood volume, was significantly larger in the RIPC group at 1 h after initiation of resuscitation compared to the control group (p = 0.04). Left ventricular function assessed by fractional shortening was comparable in both groups at 1 h after initiation of resuscitation. Blood urea nitrogen (BUN) was within normal range in the RIPC group (17.3 ± 1.2 mg/dl) but elevated in the control group (22.0 ± 1.7 mg/dl) at 48 h after shock. CONCLUSIONS RIPC significantly improved short-term survival in rats that were subjected to hemorrhagic shock, and this benefit was maintained long term. RIPC led to greater circulating intravascular blood volume in the early phase of resuscitation and improved BUN.
Collapse
Affiliation(s)
- Wangde Dai
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA. .,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA.
| | - Jianru Shi
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| | - Juan Carreno
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA
| | - Sharon L Hale
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes, 686 S. Fair Oaks Ave., Pasadena, CA, 91105, USA.,Division of Cardiovascular Medicine of the Keck School of Medicine, University of Southern California, Los Angeles, CA, 90017-2395, USA
| |
Collapse
|
3
|
Wang XQ, Zhang YP, Zhang LM, Feng NN, Zhang MZ, Zhao ZG, Niu CY. Resveratrol enhances vascular reactivity in mice following lipopolysaccharide challenge via the RhoA-ROCK-MLCP pathway. Exp Ther Med 2017; 14:308-316. [PMID: 28672931 PMCID: PMC5488661 DOI: 10.3892/etm.2017.4486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to identify whether sepsis-induced vascular hyporeactivity is associated with microcirculation disturbance and multiple organ injuries. The current study assessed the impact of resveratrol (Res) treatment on lipopolysaccharide (LPS) challenge mediated vascular hyporeactivity. Effects of Res treatment (30 mg/kg; i.m.) at 1 h following LPS stimulation (5 mg/kg; i.v.) on the survival time, mean arterial pressure (MAP), and maximal difference of MAP (ΔMAP) to norepinephrine (NE; 4.2 µg/kg) in mice were observed. The reactivity to gradient NE of isolated mesenteric arterioles and the association with the RhoA-RhoA kinase (ROCK)-myosin light chain phosphatase (MLCP) pathway were investigated by myography, and the signaling molecule protein levels were assessed using ELISA. Res treatment prolonged the survival time of mice subjected to LPS challenge, but did not prevent the LPS-induced hypotension and increase in ΔMAP. Res treatment and RhoA agonist U-46619 incubation prevented LPS-induced vascular hyporeactivity ex vivo, which were suppressed by incubation with ROCK inhibitor Y-27632. LPS-induced vascular hyporeactivity was not affected by the MLCP inhibitor okadaic acid incubation, but was further downregulated by the co-incubation of OA plus Y-27632. The inhibiting effect of Y-27632 on Res treatment was eradicated by incubation with U-46619. Furthermore, RhoA inhibitor C3 transferase did not significantly inhibit the enhancing role of Res treatment, which was further increased by U-46619 plus C3 transferase co-incubation. In addition, Res treatment eradicated the LPS-induced decreases in p-RhoA and p-Mypt1 levels and increases in MLCP levels. The results of the present study indicate that post-treatment of Res significantly ameliorates LPS-induced vascular hyporeactivity, which is associated with the activation of the RhoA-ROCK-MLCP pathway.
Collapse
Affiliation(s)
- Xu-Qing Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Yu-Ping Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Niu-Niu Feng
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Ming-Zhu Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Chun-Yu Niu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| |
Collapse
|
4
|
Zhang J, Yang GM, Zhu Y, Peng XY, Liu LM, Li T. Bradykinin induces vascular contraction after hemorrhagic shock in rats. J Surg Res 2014; 193:334-43. [PMID: 25048290 DOI: 10.1016/j.jss.2014.06.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bradykinin (BK) has many biological effects in inflammation, allergy, and septic shock. Studies have shown that low doses of BK can induce vascular relaxation and high doses can induce vascular contraction in many pathophysiological conditions, but the role and mechanisms that high doses of BK have on vascular contraction in hemorrhagic shock are not clear. METHODS With hemorrhagic-shock rats and hypoxia-treated superior mesenteric artery (SMA), we investigated the role and mechanisms of high doses of BK-induced vascular contraction in hemorrhagic shock. RESULTS High doses of BK (500-50,000 ng/kg in vivo or 10(-10) to 10(-5) mol/L in vitro) dose dependently induced vascular contraction of SMA and increased the vascular calcium sensitivity in normal and hemorrhagic-shock rats. Less than 10(-10) mol/L of BK induced vascular dilation BK-induced increase of vascular contractile response and calcium sensitivity was reduced by denudation of the endothelium, 18α-glycyrrhetic acid (an inhibitor of myoendothelial gap junction) and connexin 43 antisense oligodeoxynucleotide. Further studies found that high concentrations of BK-induced vascular contraction in hemorrhagic shock was closely related to the activation of Rho A-Rho kinase pathway and Protein Kinase C (PKC) α and ε. CONCLUSIONS High doses of BK can induce vascular contraction in hemorrhagic shock condition, which is endothelium and myoendothelial gap junction dependent. Cx43-mediated activation of Rho A-Rho kinase and Protein Kinase C (PKC) pathway plays a very important role in this process. This finding provided a new angle of view to the biological role of BK in other pathophysiological conditions such as hemorrhagic shock or hypoxia.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Guang-ming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Xiao-yong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China
| | - Liang-ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R China.
| |
Collapse
|
5
|
Rho kinase acts as a downstream molecule to participate in protein kinase Cε regulation of vascular reactivity after hemorrhagic shock in rats. Shock 2014; 42:239-45. [PMID: 24827390 DOI: 10.1097/shk.0000000000000199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Our previous study demonstrated that Rho kinase and protein kinase C (PKC) played important parts in the regulation of vascular reactivity after shock. Using superior mesenteric arteries (SMAs) from hemorrhagic shock rats and hypoxia-treated vascular smooth muscle cells (VSMCs), relationship of PKCε regulation of vascular reactivity to Rho kinase, as well as the signal transduction after shock, was investigated. The results showed that inhibition of Rho kinase with the Rho kinase-specific inhibitor Y-27632 antagonized the PKCε-specific agonist carbachol and highly expressed PKCε-induced increase of vascular reactivity in SMAs and VSMCs, whereas inhibition of PKCε with its specific inhibitory peptide did not antagonize the Rho kinase agonist (U-46619)-induced increase of vascular reactivity in SMAs and VSMCs. Activation of PKCε or highly expressed PKCε upregulated the activity of Rho kinase and the phosphorylation of PKC-dependent phosphatase inhibitor 17 (CPI-17), zipper interacting protein kinase (ZIPK), and integrin-linked kinase (ILK), whereas activation of Rho kinase increased only CPI-17 phosphorylation. The specific neutralization antibodies of ZIPK and ILK antagonized PKCε-induced increases in the activity of Rho kinase, but CPI-17 neutralization antibody did not antagonize this effect. These results suggested that Rho kinase takes part in the regulation of PKCε on vascular reactivity after shock. Rho kinase is downstream of PKCε. Protein kinase Cε activates Rho kinase via ZIPK and ILK; CPI-17 is downstream of Rho kinase.
Collapse
|
6
|
Bkca opener, NS1619 pretreatment protects against shock-induced vascular hyporeactivity through PDZ-Rho GEF-RhoA-Rho kinase pathway in rats. J Trauma Acute Care Surg 2014; 76:394-401. [PMID: 24398773 DOI: 10.1097/ta.0b013e3182aa2d98] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Our previous study showed that the ischemic preconditioning and pretreatment of adenosine triphosphate-sensitive potassium channel (KATP) opener, pinacidil, may induce a good protective effect on shock-induced vascular hyporeactivity. Whether the pretreatment of opener/activator of the large-conductance calcium-activated potassium channel (Bkca), NS1619, can also induce a protective effect on vascular reactivity and play a beneficial effect on subsequent hemorrhagic shock is not clear. METHODS With Sprague-Dawley rats subjected to hemorrhagic shock and their isolated superior mesenteric artery, the protective effect of NS1619 (0.5, 1, 2, and 4 mg/kg) pretreatment (30 minutes before hemorrhage shock) on vascular reactivity and the underlying mechanisms were observed. RESULTS NS1619 pretreatment significantly improved the 72-hour survival of hemorrhagic shock rats, alleviated shock-induced decrease of vascular reactivity and calcium sensitivity, and increased the cardiac output and oxygen delivery. NS1619 2 mg/kg had the best effect. These protective effects of NS1619 pretreatment on vascular reactivity and calcium sensitivity were antagonized by RhoA inhibitor, C3 transferase, and Rho kinase antagonist, Y-27632. NS1619 pretreatment up-regulated the activities of RhoA, Rho-kinase, and PDZ-Rho GEF (guanine nucleotide exchange factor). These effects of NS1619 pretreatment were eliminated by RhoA inhibitor, C3 transferase. CONCLUSION Bkca opener, NS1619 pretreatment has good protective effect on vascular reactivity and calcium sensitivity, which plays a good beneficial effect on hemorrhagic shock. The mechanism may be mainly through PDZ-Rho GEF-RhoA-Rho kinase pathway. Bkca channel may be a potential target for the treatment of shock-induced vascular hyporeactivity.
Collapse
|
7
|
Postshock mesenteric lymph drainage ameliorates vascular reactivity and calcium sensitivity through RhoA. J Surg Res 2014; 186:304-9. [DOI: 10.1016/j.jss.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 01/27/2023]
|
8
|
Zhao ZG, Wei YL, Niu CY, Zhang YP, Zhang LM, Jiang LN. Role of protein kinase G on the post-shock mesenteric lymph blockage ameliorating vascular calcium sensitivity. Acta Cir Bras 2013; 28:537-42. [DOI: 10.1590/s0102-86502013000700010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022] Open
|
9
|
Gozen A, Demiryurek S, Taskin A, Ciralik H, Bilinc H, Kara S, Aydin A, Aksoy N, Ceylan H. Protective activity of ischemic preconditioning on rat testicular ischemia: effects of Y-27632 and 5-hydroxydecanoic acid. J Pediatr Surg 2013; 48:1565-72. [PMID: 23895973 DOI: 10.1016/j.jpedsurg.2012.10.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/30/2012] [Accepted: 10/19/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND/PURPOSE The aim of this study was to investigate the role of ischemic preconditioning (IPC) on ischemia/reperfusion (I/R)-induced injury of rat testis and determine the effects of 5-hydroxydecanoic acid (5-HD), a selective K(ATP) channel antagonist, and Y-27632, a selective Rho kinase inhibitor, on IPC. METHODS I/R injury was induced by 180 min ischemia and 60 min reperfusion of testis. There were 5 groups. Group 1 served as untreated controls. The rats in Group 2 were subjected to I/R only. In Group 3, 3 cycles of IPC (5 min transient ischemia plus 5 min reperfusion) were performed prior to I/R. In groups 4 and 5, the rats were treated as in Group 3 but received intraperitoneal injections of 0.3 mg/kg Y-27632 or 10 mg/kg 5-HD prior to IPC, respectively. RESULTS I/R led to severe histopathological lesions in the rat testis and significantly lowered the scoring. I/R resulted in significant elevation in tissue lipid peroxide levels, myeloperoxidase (MPO) activity, and total antioxidative capacity (TAC), total oxidative status, and oxidative stress index levels. Protective effects of IPC on I/R-induced testicular injury of rats were observed with the significant recovery in these biochemical parameters. Y-27632 treatment led to a significant decrease in MPO activity, but there were no significant changes in the remaining parameters. Effects of IPC were blocked by 5-HD except in the TAC levels. CONCLUSION Our results showed that IPC protected rat testis against I/R-induced injury via activation of KATP channels. Additionally, Rho kinase inhibition preserved the effects of IPC in testis.
Collapse
Affiliation(s)
- Ahmet Gozen
- Department of Pediatric Surgery, Faculty of Medicine, University of Gaziantep, Gaziantep, 27310, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhu Y, Liu L, Peng X, Ding X, Yang G, Li T. Role of adenosine A2A receptor in organ-specific vascular reactivity following hemorrhagic shock in rats. J Surg Res 2013; 184:951-8. [PMID: 23587453 DOI: 10.1016/j.jss.2013.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies have demonstrated differences among organs in terms of shock-induced vascular reactivity and a role for adenosine A2A receptors (A2ARs) in protection against ischemia/reperfusion injury. However, the contributions of A2ARs to organ-specific vascular reactivity and the protection of vascular responsiveness following shock are currently unknown. METHODS We investigated the role of A2ARs in different arteries, including the left femoral artery (LFA), thoracic aorta (TA), superior mesenteric artery (SMA), right renal artery (RRA), pulmonary artery (PA), and middle cerebral artery (MCA), in hemorrhagic-shock rats. RESULTS The vascular reactivities of the LFA, SMA, RRA, and MCA increased slightly during early shock and then gradually decreased, whereas those of the PA and TA decreased from the start of shock. Different blood vessels lost vascular reactivity at different rates compared with controls; the LFA had the highest rate of loss (64.51%), followed by the SMA (44.69%), TA (36.06%), PA (37.83%), and RRA (32.33%), whereas the MCA had the lowest rate (18.45%). The rate of loss of vascular reactivity in the different vessels was negatively correlated with A2AR expression levels in normal and shock conditions. The highly selective A2AR agonist CGS 21680 significantly improved vascular reactivity, hemodynamic parameters, and animal survival, whereas the specific antagonist SCH58261 further decreased the shock-induced reduction in vascular reactivity and hemodynamic parameters. CONCLUSIONS A2ARs are involved in the regulation and protection of vascular reactivity following shock. A2AR activation may have a beneficial effect on hemorrhagic shock by improving vascular reactivity and hemodynamic parameters.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine A2 Receptor Antagonists/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Female
- Femoral Artery/drug effects
- Femoral Artery/physiology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/physiology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/physiology
- Models, Animal
- Phenethylamines/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pyrimidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/physiology
- Renal Artery/drug effects
- Renal Artery/physiology
- Shock, Hemorrhagic/mortality
- Shock, Hemorrhagic/physiopathology
- Survival Rate
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|