1
|
Ding R, Wu W, Sun Z, Li Z. AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 2020; 888:173484. [DOI: 10.1016/j.ejphar.2020.173484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/26/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
|
2
|
Limberg JK, Casey DP, Trinity JD, Nicholson WT, Wray DW, Tschakovsky ME, Green DJ, Hellsten Y, Fadel PJ, Joyner MJ, Padilla J. Assessment of resistance vessel function in human skeletal muscle: guidelines for experimental design, Doppler ultrasound, and pharmacology. Am J Physiol Heart Circ Physiol 2019; 318:H301-H325. [PMID: 31886718 DOI: 10.1152/ajpheart.00649.2019] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of duplex Doppler ultrasound almost half a century ago signified a revolutionary advance in the ability to assess limb blood flow in humans. It is now widely used to assess blood flow under a variety of experimental conditions to study skeletal muscle resistance vessel function. Despite its pervasive adoption, there is substantial variability between studies in relation to experimental protocols, procedures for data analysis, and interpretation of findings. This guideline results from a collegial discussion among physiologists and pharmacologists, with the goal of providing general as well as specific recommendations regarding the conduct of human studies involving Doppler ultrasound-based measures of resistance vessel function in skeletal muscle. Indeed, the focus is on methods used to assess resistance vessel function and not upstream conduit artery function (i.e., macrovasculature), which has been expertly reviewed elsewhere. In particular, we address topics related to experimental design, data collection, and signal processing as well as review common procedures used to assess resistance vessel function, including postocclusive reactive hyperemia, passive limb movement, acute single limb exercise, and pharmacological interventions.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,François M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | | | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Western Australia, Australia
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, Texas
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
3
|
Estato V, Nascimento A, Antunes B, Gomes F, Coelho L, Rangel R, Garzoni L, Daliry A, Bousquet P, Tibiriçá E. Cerebral Microvascular Dysfunction and Inflammation Are Improved by Centrally Acting Antihypertensive Drugs in Metabolic Syndrome. Metab Syndr Relat Disord 2016; 15:26-35. [PMID: 27929741 DOI: 10.1089/met.2016.0085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We aimed to investigate the effects of chronic oral treatment with centrally acting antihypertensive drugs, such as clonidine (CLO), an α2-adrenoceptor agonist, or LNP599, a selective I1 imidazoline receptor agonist, on brain microvascular function in rats with high-fat diet (HFD)-induced metabolic syndrome. METHODS Male Wistar Kyoto rats were maintained on a normal diet (CON) or a HFD for 20 weeks. After this period, the HFD group received oral CLO (0.1 mg/kg), LNP599 (20 mg/kg), or vehicle daily for 4 weeks. Systolic blood pressure and heart rate (HR) were evaluated by photoplethysmography. Functional capillary density, endothelial function, and endothelial-leukocyte interactions in the brain were investigated by intravital video microscopy. Cerebral microcirculatory flow was evaluated by laser speckle contrast imaging. Brain tissue endothelial nitric oxide synthase, oxidative enzyme, and inflammatory marker expression levels were analyzed. RESULTS Metabolic syndrome decreased brain functional capillary density and microvascular blood perfusion, changes accompanied by deficient brain microcirculation vasodilatory responses to acetylcholine. Significant numbers of rolling and adherent leukocytes were also observed in the brain venules. Chronic sympathetic inhibition with clonidine and LNP599 reduced blood pressure and HR. These effects were accompanied by reversals of cerebral capillary rarefaction, improvements in cerebral microvascular blood flow and endothelial function, and decreases in endothelial-leukocyte interactions in the cerebral venules. CONCLUSIONS Our results suggest that central sympathetic inhibition exerts beneficial effects by increasing perfusion and reducing inflammatory marker expression and oxidative stress in the brains of rats with metabolic syndrome. Centrally acting antihypertensive drugs may be helpful in regulating cerebral microcirculatory function and vascular inflammation in metabolic syndrome.
Collapse
Affiliation(s)
- Vanessa Estato
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,2 Institute of Drug Technology , Owaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alessandro Nascimento
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Barbara Antunes
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Fabiana Gomes
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Laura Coelho
- 3 Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Raquel Rangel
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Luciana Garzoni
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,3 Laboratory for Innovations in Therapies, Education and Bioproducts, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Anissa Daliry
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil
| | - Pascal Bousquet
- 4 Laboratory of Neurobiology and Cardiovascular Pharmacology, Faculty of Medicine, University of Strasbourg , Strasbourg, France
| | - Eduardo Tibiriçá
- 1 Laboratory of Cardiovascular Investigation, Oswaldo Cruz Foundation , Rio de Janeiro, Brazil .,5 National Institute of Cardiology , Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Abstract
OBJECTIVES Severe necrotizing pancreatitis (SNP) is a disease with relevant morbidity and mortality until today. No specific therapy is in sight. Central α2 agonists such as clonidine and dexmedetomidine are known to have anti-inflammatory effects though the cholinergic anti-inflammatory pathway and are implemented in the clinical routine as adjunct sedative drugs. Their potential effect on SNP has not yet been tested. METHODS Severe necrotizing pancreatitis was induced in male Wistar rats. Four treatment groups received either clonidine or dexmedetomidine before (prophylactic) or after induction of SNP (therapeutic). After 12 hours, pancreatic morphologic injury, systemic proinflammatory high-mobility group box 1 protein, and pancreatic and pulmonary myeloperoxidase levels were evaluated. RESULTS Severe necrotizing pancreatitis was fully established 12 hours after induction. "Prophylactic" and "therapeutic" administration of clonidine and dexmedetomidine reduced pancreatic morphologic injury (P < 0.05 vs SNP), serum proinflammatory high-mobility group box 1 protein (P < 0.0001 vs SNP), as well as pancreatic and pulmonary myeloperoxidase levels (P < 0.01 vs SNP). CONCLUSIONS Prophylactic and therapeutic applications of the central α2 agonists clonidine and dexmedetomidine are effective to attenuate local and systemic injury in experimental SNP and should be evaluated in the clinical setting.
Collapse
|
5
|
Stewart JM, Tarantal AF, Hawthorne WJ, Salvaris EJ, O'Connell PJ, Nottle MB, d'Apice AJF, Cowan PJ, Kearns-Jonker M. Clonidine inhibits anti-non-Gal IgM xenoantibody elicited in multiple pig-to-primate models. Xenotransplantation 2015; 22:413-26. [PMID: 26490547 DOI: 10.1111/xen.12199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/25/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies. However, because this compound had an unknown safety profile, we extended this line of research to include screening small molecules with known safety profiles allowing rapid advancement to large animal models. METHODS The NIH clinical collections of small molecules were screened by ELISA for their ability to inhibit xenoantibody binding to GTKO pig endothelial cells. Serum collected from non-immunosuppressed rhesus monkeys at day 14 post-injection with GTKO pig endothelial cells was utilized as a source of elicited xenoantibody for initial screening. Virtual small molecule screening based on xenoantibody structure was used to assess the likelihood that the identified small molecules bound xenoantibody directly. As a proxy for selectivity, ELISAs against tetanus toxoid and the natural antigens laminin, thyroglobulin, and single-stranded DNA (ssDNA) were utilized to assess the ability of the identified reagents to inhibit additional antibody responses. The identified inhibitory small molecules were further tested for their ability to inhibit xenoantibody elicited in multiple settings, including rhesus monkeys pre-treated with an anti-non-Gal selective anti-idiotypic antibody, non-immunosuppressed rhesus monkeys immunized with wild-type fetal pig isletlike cell clusters, and non-immunosuppressed baboons transplanted with GTKO multiple transgenic pig kidneys. RESULTS Four clinically relevant small molecules inhibited anti-non-Gal IgM binding to GTKO pig endothelial cells in vitro. Three of these drugs displayed a limited region of structural similarity suggesting they may inhibit xenoantibody by a similar mechanism. One of these, the anti-hypertensive agent clonidine, displayed only minimal inhibition of antibodies elicited by vaccination against tetanus toxoid or pre-existing natural antibodies against laminin, thyroglobulin, or ssDNA. Furthermore, clonidine inhibited elicited anti-non-Gal IgM from all animals that demonstrated a xenoantibody response in each experimental setting. CONCLUSIONS Clinically relevant small molecule drugs with known safety profiles can inhibit xenoantibody elicited against non-Gal antigens in diverse experimental xenotransplantation settings. These molecules are ready to be tested in large animal models. However, it will first be necessary to optimize the timing and dosing required to inhibit xenoantibodies in vivo.
Collapse
Affiliation(s)
- John M Stewart
- Department of Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, and California National Primate Research Center, University of California, Davis, CA, USA
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead, NSW, Australia.,National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Evelyn J Salvaris
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Vic., Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, Westmead, NSW, Australia.,National Pancreas Transplant Unit, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - Mark B Nottle
- Discipline of Obstetrics and Gynaecology, University of Adelaide, Adelaide, SA, Australia
| | - Anthony J F d'Apice
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Vic., Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic., Australia
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Melbourne, Vic., Australia.,Department of Medicine, University of Melbourne, Melbourne, Vic., Australia
| | - Mary Kearns-Jonker
- Department of Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
6
|
Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nat Commun 2015; 6:6532. [PMID: 25766071 PMCID: PMC4360920 DOI: 10.1038/ncomms7532] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/05/2015] [Indexed: 01/21/2023] Open
Abstract
Oligodendrocyte death contributes to the pathogenesis of the inflammatory demyelinating disease multiple sclerosis (MS). Nevertheless, current MS therapies are mainly immunomodulatory and have demonstrated limited ability to inhibit MS progression. Protection of oligodendrocytes is therefore a desirable strategy for alleviating disease. Here we demonstrate that enhancement of the integrated stress response using the FDA-approved drug guanabenz increases oligodendrocyte survival in culture and prevents hypomyelination in cerebellar explants in the presence of interferon-γ, a pro-inflammatory cytokine implicated in MS pathogenesis. In vivo, guanabenz treatment protects against oligodendrocyte loss caused by CNS-specific expression of interferon-γ. In a mouse model of MS, experimental autoimmune encephalomyelitis, guanabenz alleviates clinical symptoms, which correlates with increased oligodendrocyte survival and diminished CNS CD4+ T cell accumulation. Moreover, guanabenz ameliorates relapse in relapsing-remitting experimental autoimmune encephalomyelitis. Our results provide support for a MS therapy that enhances the integrated stress response to protect oligodendrocytes against the inflammatory CNS environment. Current multiple sclerosis treatments focus on prevention of immune attack on oligodendrocytes and myelin. Here the authors show a different strategy to ameliorate disease in several mouse models, protecting oligodendrocytes from inflammation-induced death with an FDA-approved drug, guanabenz.
Collapse
|
7
|
Forget P, Moreau N, Engel H, Cornu O, Boland B, De Kock M, Yombi JC. The neutrophil-to-lymphocyte ratio (NLR) after surgery for hip fracture (HF). Arch Gerontol Geriatr 2015; 60:366-71. [DOI: 10.1016/j.archger.2014.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/17/2014] [Accepted: 11/21/2014] [Indexed: 01/04/2023]
|
8
|
Hall CJ, Wicker SM, Chien AT, Tromp A, Lawrence LM, Sun X, Krissansen GW, Crosier KE, Crosier PS. Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents. Dis Model Mech 2014; 7:1069-81. [PMID: 25038060 PMCID: PMC4142727 DOI: 10.1242/dmm.016873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs.
Collapse
Affiliation(s)
- Christopher J Hall
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sophie M Wicker
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - An-Tzu Chien
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Alisha Tromp
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lisa M Lawrence
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Xueying Sun
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Geoffrey W Krissansen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Kathryn E Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Philip S Crosier
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
9
|
Dal-Pizzol F, Tomasi CD, Ritter C. Septic encephalopathy: does inflammation drive the brain crazy? REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:251-8. [DOI: 10.1590/1516-4446-2013-1233] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/11/2013] [Indexed: 11/21/2022]
|