1
|
Tang Z, Lin F, Chen Z, Yu B, Liu JH, Liu X. 4'- O-MethylbavachalconeB Targeted 14-3-3ζ Blocking the Integrin β3 Early Outside-In Signal to Inhibit Platelet Aggregation and Thrombosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7043-7054. [PMID: 38509000 DOI: 10.1021/acs.jafc.3c05211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
14-3-3ζ protein, the key target in the regulation and control of integrin β3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin β3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 μM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin β3 interaction. Besides, 4-O-MB affected the integrin β3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.
Collapse
Affiliation(s)
- Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Fanqi Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zhiwen Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Ji-Hua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, P. R. China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
2
|
Liu C, Guo G, Li X, Shen Y, Xu X, Chen Y, Li H, Hao J, He K. Identification of novel urine proteomic biomarkers for high stamina in high-altitude adaptation. Front Physiol 2023; 14:1153166. [PMID: 37250129 PMCID: PMC10214468 DOI: 10.3389/fphys.2023.1153166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: We aimed to identify urine biomarkers for screening individuals with adaptability to high-altitude hypoxia with high stamina levels. Although most non-high-altitude natives experience rapid decline in physical ability when ascending to high altitudes, some individuals with high-altitude adaptability continue to maintain high endurance levels. Methods: We divided the study population into two groups: the LC group (low change in endurance from low to high altitude) and HC group (high change in endurance from low to high altitude). We performed blood biochemistry testing for individuals at high altitudes and sea level. We used urine peptidome profiling to compare the HH (high-altitude with high stamina) and HL (high-altitude with low stamina) groups and the LC and HC groups to identify urine biomarkers. Results: Routine blood tests revealed that the concentration of white blood cells, lymphocytes and platelets were significantly higher in the HH group than in the HL group. Urine peptidome profiling showed that the proteins ITIH1, PDCD1LG2, NME1-NME2, and CSPG4 were significantly differentially expressed between the HH and HL groups, which was tested using ELISA. Urine proteomic analysis showed that LRG1, NID1, VASN, GPX3, ACP2, and PRSS8 were urine proteomic biomarkers of high stamina during high-altitude adaptation. Conclusion: This study provides a novel approach for identifying potential biomarkers for screening individuals who can adapt to high altitudes with high stamina.
Collapse
Affiliation(s)
- Chunlei Liu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xiang Xu
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Jianxiu Hao
- Clinical Sample Bank, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Medical Big Data Research Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Alyahya AM. The role of progranulin in ischemic heart disease and its related risk factors. Eur J Pharm Sci 2022; 175:106215. [DOI: 10.1016/j.ejps.2022.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/23/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022]
|
4
|
Ramakrishna K, Krishnamurthy S. Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Nat Prod Res 2022; 36:6044-6049. [PMID: 35175868 DOI: 10.1080/14786419.2022.2041632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present study investigated the cardioprotection of Indole-3-carbinol on isoproterenol (ISO)-induced myocardial infarction in Wistar rats. I3C treatment significantly reduced the prolongation of the QRS complex, QT interval, and ST-segment elevation. I3C was also able to normalise blood pressure (SBP, DBP, and MAP) and HR. I3C significantly decreased heart weight, cardiac troponin I (cTn I), CK-MB, LDH, AST and ALT. I3C ameliorated acute hyperglycaemia, hyperlipidemia, and myocardial infarction (%) in ISO rats. I3C treatment significantly elevated the antioxidant enzymes like SOD, CAT, and GSH and attenuated the MDA levels. I3C reduced the inflammatory cytokines (TNF-α and IL-6) and increased the anti-inflammatory cytokine 1 L-10. Furthermore, I3C significantly recovered myocardial structure by inhibiting neutrophil infiltration and oedema. Moreover, I3C attenuated apoptotic markers (cytochrome C, caspase 9 and caspase 3). Consequently, I3C restored cardiac function in MI rats by alleviating oxidative stress, inflammation, and apoptosis, and I3C could be used to treat myocardial infarction.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (IIT BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
5
|
Amano H, Nakamura M, Ito Y, Kakutani H, Eshima K, Kitasato H, Narumiya S, Majima M. Thromboxane A synthase enhances blood flow recovery from hindlimb ischemia. J Surg Res 2016; 204:153-63. [DOI: 10.1016/j.jss.2016.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/06/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022]
|
6
|
Wang W, Lau WB, Wang Y, Ma X, Li R. Reduction of CTRP9, a novel anti-platelet adipokine, contributes to abnormal platelet activity in diabetic animals. Cardiovasc Diabetol 2016; 15:6. [PMID: 26754066 PMCID: PMC4709932 DOI: 10.1186/s12933-015-0321-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/20/2022] Open
Abstract
Platelet hyper-reactivity is a crucial cause of accelerated atherosclerosis increasing risk of thrombotic vascular events in diabetic patients. The mechanisms leading to abnormal platelet activity during diabetes are complex and not fully defined. The current study attempted to clarify the role of CTRP9, a novel adiponectin paralog, in enhanced platelet activity and determined whether CTRP9 may inhibit platelet activity. Adult male C57BL/6 J mice were randomized to receive high-fat diet (HFD) or normal diet (ND). 8 weeks after HFD, animals were sacrificed, and both plasma CTRP9 and platelet aggregation were determined. HFD-fed animals increased weight gain significantly, and became hyperglycemic and hyperinsulinemic 8 weeks post-HFD. Compared to ND animals, HFD animals exhibited significantly decreased plasma CTRP9 concentration and increased platelet response to ADP, evidenced by augmented aggregation amplitude, steeper aggregation slope, larger area under the curve, and shorter lag time (P < 0.01). A significant negative correlation between plasma CTRP9 concentration and platelet aggregation amplitude was observed. More importantly, in vitro pre-treatment with CTRP9 significantly inhibited ADP-stimulated platelet activation in platelet samples from both ND and HFD animals. Taken together, our results suggest reduced plasma CTRP9 concentration during diabetes plays a causative role in platelet hyper-activity, contributing to platelet-induced cardiovascular damage during this pathologic condition. Enhancing CTRP9 production and/or exogenous supplementation of CTRP9 may protect against diabetic cardiovascular injury via inhibition of abnormal platelet activity.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, 710038, Xian, People's Republic of China.
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA, 19107, USA.
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA, 19107, USA.
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA, 19107, USA.
| | - Rong Li
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, 710032, Xian, People's Republic of China.
| |
Collapse
|
7
|
Marcucci R, Grifoni E, Giusti B. On-treatment platelet reactivity: State of the art and perspectives. Vascul Pharmacol 2015; 77:8-18. [PMID: 26520003 DOI: 10.1016/j.vph.2015.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/20/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
High on-clopidogrel platelet reactivity (HcPR) during dual-antiplatelet therapy is a marker of vascular risk, in particular stent thrombosis, in patients with acute coronary syndromes (ACS). Genetic determinants (CYP2C19*2 polymorphism), advanced age, female gender, diabetes and reduced ventricular function are related to a higher risk to develop HcPR. In addition, inflammation and increased platelet turnover, as revealed by the elevated percentage of reticulated platelets in patients' blood, that characterize the acute phase of acute coronary syndromes, are associated with HcPR. To overcome the limitation of clopidogrel, new antiplatelet agents (prasugrel and ticagrelor) were developed and the demonstration of their superiority over clopidogrel was obtained in the two randomized trials, TRITON TIMI 38 and PLATO. Emerging evidence is accumulating on the role of high-on aspirin platelet reactivity (HaPR), especially in the clinical context of diabetes. Finally, the presence of new, potent antiplatelet drugs has shifted the focus from thrombotic to bleeding risk. Recent data document that low on-treatment platelet reactivity (LPR) is associated with a significantly higher bleeding risk. Due to the current possibility to choose between multiple antiplatelet strategies, the future perspective is to include in the management of ACS, in addition to clinical data and classical risk factors, the definition of platelet function during treatment in order to set a tailored therapy.
Collapse
Affiliation(s)
- Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Center for Aterothrombotic Diseases, AOU Careggi, Florence, Italy.
| | - Elisa Grifoni
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Center for Aterothrombotic Diseases, AOU Careggi, Florence, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Italy; Center for Aterothrombotic Diseases, AOU Careggi, Florence, Italy
| |
Collapse
|
8
|
Miernisha A, Bi CWC, Cheng LKW, Xing JG, Liu J, Maiwulanjiang M, Aisa HA, Dong TTX, Lin H, Huang Y, Tsim KWK. Badiranji Buya Keli, a Traditional Uyghur Medicine, Induces Vasodilation in Rat Artery: Signaling Mediated by Nitric Oxide Production in Endothelial Cells. Phytother Res 2015; 30:16-24. [DOI: 10.1002/ptr.5494] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/15/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022]
Affiliation(s)
- A. Miernisha
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| | - Cathy W. C. Bi
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| | - Lily K. W. Cheng
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| | - J. G. Xing
- The Xinjiang Institute of Materia Medica; Urumqi China
| | - J. Liu
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences; Chinese University of Hong Kong; Hong Kong China
| | - M. Maiwulanjiang
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
- Key Laboratory of Plant Resources and Natural Products Chemistry; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi China
| | - H. A. Aisa
- Key Laboratory of Plant Resources and Natural Products Chemistry; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi China
| | - Tina T. X. Dong
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| | - Huangquan Lin
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| | - Y. Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences; Chinese University of Hong Kong; Hong Kong China
| | - Karl W. K. Tsim
- Division of Life Science and Center for Chinese Medicine; The Hong Kong University of Science and Technology; Clear Water Bay Road Hong Kong China
| |
Collapse
|
9
|
Bibliography—Editors’ selection of current world literature. Coron Artery Dis 2013; 24:449-53. [DOI: 10.1097/mca.0b013e3283637afd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Bibliography-editors' selection of current world literature. Coron Artery Dis 2013; 24:342-6. [PMID: 23615435 DOI: 10.1097/mca.0b013e3283623522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|