Später T, Menger MD, Laschke MW. Vascularization Strategies for Porous Polyethylene Implants.
TISSUE ENGINEERING PART B-REVIEWS 2020;
27:29-38. [PMID:
32524897 DOI:
10.1089/ten.teb.2020.0077]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Porous polyethylene (pPE) is a frequently implanted biomaterial in craniofacial reconstructive surgery. Its rapid vascularization and tissue incorporation are major prerequisites to prevent complications, such as material infection, migration, and extrusion. To achieve this, several sophisticated strategies have been introduced and evaluated during the last 20 years. These include (i) the angiogenic stimulation of the host tissue with epidermal growth factor, basic fibroblast growth factor or macrophage-activating lipopeptide-2, (ii) material modifications, such as increase of surface roughness and incorporation of bioactive glass particles, (iii) surface coatings with growth factors, glycoproteins, acrylic acid, arginine/glycine/aspartic acid peptide as well as components of the plasminogen activation system and autologous clotted blood or serum, and (iv) the seeding with fibroblasts, chondrocytes, stem cells, or adipose-tissue-derived microvascular fragments. The majority of these approaches showed promising results in experimental studies and, thus, may be capable of improving the success rates after pPE implantation in future clinical practice.
Collapse