1
|
Chen J, Wang D, Chen H, Gu J, Jiang X, Han F, Cao J, Liu W, Liu J. TMEM196 inhibits lung cancer metastasis by regulating the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol 2023; 149:653-667. [PMID: 36355209 DOI: 10.1007/s00432-022-04363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/14/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE The TMEM196 protein, which comprises four membrane-spanning domains, belongs to the TMEM protein family. TMEM196 was identified as a candidate tumor suppressor gene in lung cancer. However, its role and mechanism in lung cancer metastasis remain unclear. Here, we study the role of TMEM196 in tumor metastasis to further verify the function in lung cancer. METHODS In this study, we used qRT-PCR, western blot analysis and immunohistochemistry to examine the expression levels of TMEM196 and related proteins in lung cancer tissues and tumor cells. We utilized Transwell assays, xenograft nude mouse models, and TMEM196-/- mouse models to evaluate the effects of TMEM196 on tumor invasion and metastasis. Finally, we used bioinformatics analysis and dual-luciferase reporter gene assays to explore the molecular mechanism of TMEM196 as a tumor suppressor. RESULTS We found that TMEM196 mRNA and protein expression levels were significantly decreased in lung cancer tissues and cells. Low expression of TMEM196 in clinical patients was associated with poor prognosis. TMEM196 strongly inhibited tumor metastasis and progression in vitro and in vivo. The primary lung tumors induced by tail vein-inoculated B16 cells in TMEM196-/- mice were significantly larger than those in TMEM196+/+ mice. Mechanistically, TMEM196 inhibited the Wnt signaling pathway and repressed β-catenin promoter transcription. TMEM196 silencing in lung cancer cells and mice resulted in significant upregulation of the expression of β-catenin and Wnt signaling pathway downstream target genes (MMP2 and MMP7). Decreasing β-catenin expression in TMEM196-silenced cancer cells attenuated the antimetastatic effect of TMEM196. CONCLUSIONS Our results revealed that TMEM196 acts as a novel lung cancer metastasis suppressor via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jianping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Dandan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.,Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Medical School of Henan University, Kaifeng, People's Republic of China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jin Gu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China. .,Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
2
|
Yan Q, Forno E, Cardenas A, Qi C, Han YY, Acosta-Pérez E, Kim S, Zhang R, Boutaoui N, Canino G, Vonk JM, Xu CJ, Chen W, Marsland A, Oken E, Gold DR, Koppelman GH, Celedón JC. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. Pediatr Pulmonol 2021; 56:1896-1905. [PMID: 33751861 PMCID: PMC8217314 DOI: 10.1002/ppul.25372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exposure to violence (ETV) or chronic stress may influence asthma through unclear mechanisms. METHODS Epigenome-wide association study (EWAS) of ETV or chronic stress measures and DNA methylation in nasal epithelium from 487 Puerto Ricans aged 9-20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study [EVA-PR]). We assessed four measures of ETV and chronic stress in children (ETV scale, gun violence, and perceived stress) and their mothers (perceived stress). Each EWAS was conducted using linear regression, with CpGs as dependent variables and the stress/violence measure as a predictor, adjusting for age, sex, the top five principal components, and SVA latent factors. We then selected the top 100 CpGs (by p value) associated with each stress/violence measure in EVA-PR and conducted a meta-analysis of the selected CpGs and atopic asthma using data from EVA-PR and two additional cohorts (Project Viva and PIAMA). RESULTS Three CpGs (in SNN, PTPRN2, and LINC01164) were associated with maternal perceived stress or gun violence (p = 1.28-3.36 × 10-7 ), but not with atopic asthma, in EVA-PR. In a meta-analysis of three cohorts, which included the top CpGs associated with stress/violence measures in EVA-PR, 12 CpGs (in STARD3NL, SLC35F4, TSR3, CDC42SE2, KLHL25, PLCB1, BUD13, OR2B3, GALR1, TMEM196, TEAD4, and ANAPC13) were associated with atopic asthma at FDR-p < .05. CONCLUSIONS Pending confirmation in longitudinal studies, our findings suggest that nasal epithelial methylation markers associated with measures of ETV and chronic stress may be linked to atopic asthma in children and adolescents.
Collapse
Affiliation(s)
- Qi Yan
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andres Cardenas
- Division of Environmental Health Sciences, University of California, Berkeley, California, USA.,Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edna Acosta-Pérez
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Soyeon Kim
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rong Zhang
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nadia Boutaoui
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Glorisa Canino
- Behavioral Sciences Research Institute, University of Puerto Rico, San Juan, Puerto Rico
| | - Judith M Vonk
- University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Wei Chen
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, University Medical Center Groningen, Beatrix Children's Hospital, University of Groningen, Groningen, The Netherlands.,University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Yan Q, Forno E, Cardenas A, Qi C, Han YY, Acosta-Pérez E, Kim S, Zhang R, Boutaoui N, Canino G, Vonk JM, Xu CJ, Chen W, Oken E, Gold DR, Koppelman GH, Celedón JC. Exposure to violence, chronic stress, nasal DNA methylation, and atopic asthma in children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33173928 DOI: 10.1101/2020.11.03.20225250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Exposure to violence (ETV) or stress may cause asthma through unclear mechanisms. Methods Epigenome-wide association study (EWAS) of DNA methylation in nasal epithelium and four ETV or chronic stress measures in 487 Puerto Ricans aged 9-20 years who participated in the Epigenetic Variation and Childhood Asthma in Puerto Ricans study [EVA-PR]). We assessed measures of ETV or chronic stress in children (ETV scale, gun violence, and perceived stress) and their mothers (perceived stress). Each EWAS was conducted using linear regression, with CpGs as dependent variables and the stress/violence measure as a predictor, adjusting for age, sex, the top five principal components, and SVA latent factors. We then selected the top 100 CpGs (by P-value) associated with each stress/violence measure in EVA-PR and conducted a meta-analysis of the selected CpGs and atopic asthma using data from EVA-PR and two additional cohorts (Project Viva and PIAMA). Results In the EWAS of stress/violence in EVA-PR, gun violence was associated with methylation of cg18961589 in LINC01164 (β=0.03, P =1.28×10 -7 ), and maternal stress was associated with methylation of cg03402351 in SNN (β=0.04, P =1.69×10 -7 ) and cg19064846 in PTPRN2 (β=0.03, P =3.36×10 -7 ). In a meta-analysis of three cohorts, which included the top CpGs associated with stress/violence in EVA-PR, CpGs in STARD3NL, SLC35F4, TSR3, CDC42SE2, KLHL25, PLCB1, BUD13, OR2B3, GALR1, TMEM196, TEAD4 and ANAPC13 were associated with atopic asthma at FDR- P < 0.05. Conclusions ETV and chronic stress may increase the risk of atopic asthma through DNA methylation in airway epithelium, though this needs confirmation in future longitudinal studies.
Collapse
|