1
|
Orlikova-Boyer B, Lorant A, Gajulapalli SR, Cerella C, Schnekenburger M, Lee JY, Paik JY, Lee Y, Siegel D, Ross D, Han BW, Nguyen TKY, Christov C, Kang HJ, Dicato M, Diederich M. Antileukemic potential of methylated indolequinone MAC681 through immunogenic necroptosis and PARP1 degradation. Biomark Res 2024; 12:47. [PMID: 38704604 PMCID: PMC11069214 DOI: 10.1186/s40364-024-00594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence. METHODS Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD+ and NADH levels, ATP production rate by Seahorse analyzer, and intracellular ATP content. Mitochondrial fitness was estimated by measurements of mitochondrial membrane potential, ROS, and calcium accumulation by flow cytometry, and morphology was visualized by TEM. Bioinformatic analysis, real-time qPCR, western blotting, chemical reaction prediction, and molecular docking were utilized to identify the drug target. The immunogenic potential was assessed by high mobility group box (HMGB)1 ELISA assay, luciferase-based extracellular ATP assay, ectopic calreticulin expression by flow cytometry, and validated by phagocytosis assay, and in vivo vaccination assay using syngeneic C57BL/6 mice. RESULTS Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities. CONCLUSIONS Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.
Collapse
Affiliation(s)
- Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Present address: Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ji Yeon Paik
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Yejin Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - David Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David Ross
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Thi Kim Yen Nguyen
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | | | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Jin N, Xia Y, Gao Q. Combined PARP inhibitors and small molecular inhibitors in solid tumor treatment (Review). Int J Oncol 2023; 62:28. [PMID: 36601757 PMCID: PMC9851129 DOI: 10.3892/ijo.2023.5476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023] Open
Abstract
With the development of precision medicine, targeted therapy has attracted extensive attention. Poly(ADP‑ribose) polymerase inhibitors (PARPi) are critical clinical drugs designed to induce cell death and are major antitumor targeted agents. However, preclinical and clinical data have revealed the limitations of PARPi monotherapy. Therefore, their combination with other targeted drugs has become a research hotspot in tumor treatment. Recent studies have demonstrated the critical role of small molecular inhibitors in multiple haematological cancers and solid tumors via cellular signalling modulation, exhibiting potential as a combined pharmacotherapy. In the present review, studies focused on small molecular inhibitors targeting the homologous recombination pathway were summarized and clinical trials evaluating the safety and efficacy of combined treatment were discussed.
Collapse
Affiliation(s)
- Ning Jin
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yu Xia
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Qinglei Gao
- Key Laboratory of The Ministry of Education, Cancer Biology Research Center, Tongji Hospital, Wuhan, Hubei 430000, P.R. China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
3
|
Li Q, Huang Z, Peng Y, Wang X, Jiang G, Wang T, Mou K, Feng W. RanBP3 Regulates Proliferation, Apoptosis and Chemosensitivity of Chronic Myeloid Leukemia Cells via Mediating SMAD2/3 and ERK1/2 Nuclear Transport. Front Oncol 2021; 11:698410. [PMID: 34504783 PMCID: PMC8421687 DOI: 10.3389/fonc.2021.698410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022] Open
Abstract
Abnormal subcellular localization of proteins is an important cause of tumorigenesis and drug resistance. Chromosome region maintenance 1 (CRM1), the nuclear export regulator of most proteins, has been confirmed to be over-expressed in various malignancies and is regarded as an efficient target. But the potential role of the CRM1 cofactor RanBP3 (Ran Binding Protein 3) is left unrevealed in chronic myeloid leukemia (CML). Here, we first detected the level of RanBP3 in CML and found an elevated RanBP3 expression in CML compared with control. Then we used shRNA lentivirus to down-regulated RanBP3 in imatinib sensitive K562 cells and resistant K562/G01 cells and found RanBP3 silencing inhibited cell proliferation by up-regulating p21, induced caspase3-related cell apoptosis, and enhanced the drug sensitivity of IM in vitro. Notably, we observed that RanBP3 silencing restored imatinib sensitivity of K562 cells in NOD/SCID mice. Mechanistically, the nuclear aggregation of SMAD2/3 revealed that tumor suppressor axis (TGF-β)-SMAD2/3-p21 was the anti-proliferation program related to RanBP3 knockdown, and the decrease of cytoplasmic ERK1/2 caused by RanBP3 interference leaded to the down-regulation of anti-apoptosis protein p(Ser112)-BAD, which was the mechanism of increased cell apoptosis and enhanced chemosensitivity to imatinib in CML. In summary, this study revealed the expression and potential role of RanBP3 in CML, suggesting that targeting RanBP3 alone or combined with TKIs could improve the clinical response of CML.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Yuhang Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoyun Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Teng Wang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Mou
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| | - Wenli Feng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Department of Clinical Hematology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Natarajan A, Thangarajan R, Kesavan S. Repurposing Drugs by In Silico Methods to Target BCR Kinase Domain in Chronic Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3399-3406. [PMID: 31759365 PMCID: PMC7063026 DOI: 10.31557/apjcp.2019.20.11.3399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Targeted therapy in the form of highly selective tyrosine kinase inhibitors (TKIs) has transformed the treatment of chronic myeloid leukemia (CML). However, mutations in the kinase domain contribute to drug resistance against TKIs which compromises the treatment response. Our aim is to explore regions outside the BCR-ABL oncoprotein to identify potential therapeutic targets to curb drug resistance by targeting growth factor receptor-bound protein-2 (Grb-2) which binds to BCR-ABL at the phosphorylated tyrosine (Y177) thereby activating the Ras and PI3K/AKT signaling pathway. METHODS We have used in silico methods to repurpose drugs for identifying their potential to inhibit the binding of Grb-2 with Y177 by occupying the active binding site of the BCR domain. RESULTS Differentially expressed genes from GEO dataset were found to be associated with hematopoietic cell lineage, NK cell-mediated cytotoxicity, NF-κB and chemokine signaling, cytokine-cytokine receptor interaction, histidine metabolism and transcriptional misregulation in cancer. The fold recognition method of SPARKS-X tool was used to model the BCR domain (Z-score = 8.21). Connectivity Map generated a drug list based on the gene expression profile, which were docked with BCR. Schrodinger XP glide docking identified Diphosphopyridine nucleotide, Hesperidin, Butirosin, Ovoflavin, and Nor-dihydroguaiaretic acid to show strong interaction in close proximity to the active binding pocket containing Y177 of the target protein and was further validated using iGEMDOCK and Parallelized Open Babel and AutoDock suite Pipeline (POAP). CONCLUSION Our study not only extends our current knowledge about repurposing drugs for newer indications but also provides a route towards combinatorial therapy with standard drugs used for CML treatment. However, the efficacy of these repurposed drugs needs to be further investigated using in vitro and in vivo studies.<br />.
Collapse
Affiliation(s)
- Aparna Natarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, India
| | | | - Sabitha Kesavan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, India
| |
Collapse
|
5
|
Overexpressed long noncoding RNA CRNDE with distinct alternatively spliced isoforms in multiple cancers. Front Med 2019; 13:330-343. [DOI: 10.1007/s11684-017-0557-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/30/2017] [Indexed: 12/22/2022]
|
6
|
Vicente-Dueñas C, González-Herrero I, Sehgal L, García-Ramírez I, Rodríguez-Hernández G, Pintado B, Blanco O, Criado FJG, Cenador MBG, Green MR, Sánchez-García I. Dnmt1 links BCR-ABLp210 to epigenetic tumor stem cell priming in myeloid leukemia. Leukemia 2018; 33:249-278. [PMID: 29955131 PMCID: PMC6326950 DOI: 10.1038/s41375-018-0192-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/20/2018] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Inés González-Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
| | - Lalit Sehgal
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Idoia García-Ramírez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
| | - Guillermo Rodríguez-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain
| | - Belén Pintado
- Transgenesis Facility CNB-CBMSO, CSIC-UAM, Madrid, Spain
| | - Oscar Blanco
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Francisco Javier García Criado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - María Begoña García Cenador
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Michael R Green
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isidro Sánchez-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC-USAL, Campus M. de Unamuno s/n, Salamanca, Spain.
| |
Collapse
|
7
|
Chorzalska A, Kim JF, Roder K, Tepper A, Ahsan N, Rao RSP, Olszewski AJ, Yu X, Terentyev D, Morgan J, Treaba DO, Zhao TC, Liang O, Gruppuso PA, Dubielecka PM. Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia. Stem Cells Dev 2017; 26:656-677. [PMID: 28103766 DOI: 10.1089/scd.2016.0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.
Collapse
Affiliation(s)
- Anna Chorzalska
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Javier Flores Kim
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Karim Roder
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Alexander Tepper
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Nagib Ahsan
- 3 Division of Biology and Medicine, Brown University , Center for Cancer Research and Development Proteomics Core Facility, Rhode Island Hospital, Providence, Rhode Island
| | - R Shyama Prasad Rao
- 4 Division of Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University , Mangalore, India
| | - Adam J Olszewski
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Xiaoqing Yu
- 6 Department of Biostatistics, Yale School of Public Health , New Haven, Connecticut
| | - Dmitry Terentyev
- 2 Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - John Morgan
- 7 Flow Cytometry and Cell Sorting Core Facility, Roger Williams Medical Center , Providence, Rhode Island
| | - Diana O Treaba
- 8 Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Ting C Zhao
- 9 Cardiovascular Laboratory, Department of Surgery, Roger Williams Medical Center, Boston University School of Medicine , Providence, Rhode Island
| | - Olin Liang
- 5 Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island.,10 Department of Orthopedics, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| | - Philip A Gruppuso
- 11 Department of Pediatrics, Brown University , Rhode Island Hospital, Providence, Rhode Island
| | - Patrycja M Dubielecka
- 1 Signal Transduction Laboratory, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School, Brown University , Providence, Rhode Island
| |
Collapse
|
8
|
Kirschner G, Balla B, Horváth P, Kövesdi A, Lakatos G, Takács I, Nagy Z, Tóbiás B, Árvai K, Kósa JP, Lakatos P. Effects of imatinib and nilotinib on the whole transcriptome of cultured murine osteoblasts. Mol Med Rep 2016; 14:2025-37. [PMID: 27430367 PMCID: PMC4991674 DOI: 10.3892/mmr.2016.5459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022] Open
Abstract
Numerous clinical observations have confirmed that breakpoint cluster region-abelson fusion oncoprotein tyrosine kinase inhibitors used in leukemia treatment alter bone physiology in a complex manner. The aim of the present study was to analyze the whole transcriptome of cultured murine osteoblasts and determine the changes following treatment with imatinib and nilotinib using Sequencing by Oligonucleotide Ligation and Detection next generation RNA sequencing. This study also aimed to identify candidate signaling pathways and network regulators by multivariate Ingenuity Pathway Analysis. Based on the right-tailed Fisher's exact test, significantly altered pathways including upstream regulators were defined for each drug. The correlation between these pathways and bone metabolism was also examined. The preliminary results suggest the two drugs have different mechanisms of action on osteoblasts, and imatinib was shown to have a greater effect on gene expression. Data also indicated the potential role of a number of genes and signaling cascades that may contribute to identifying novel targets for the treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Gyöngyi Kirschner
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Bernadett Balla
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Horváth
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Andrea Kövesdi
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Gergely Lakatos
- Second Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - István Takács
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Zsolt Nagy
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Bálint Tóbiás
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Kristóf Árvai
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - János Pál Kósa
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| | - Péter Lakatos
- First Department of Internal Medicine, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
9
|
Naka K, Jomen Y, Ishihara K, Kim J, Ishimoto T, Bae EJ, Mohney RP, Stirdivant SM, Oshima H, Oshima M, Kim DW, Nakauchi H, Takihara Y, Kato Y, Ooshima A, Kim SJ. Dipeptide species regulate p38MAPK-Smad3 signalling to maintain chronic myelogenous leukaemia stem cells. Nat Commun 2015; 6:8039. [PMID: 26289811 PMCID: PMC4560789 DOI: 10.1038/ncomms9039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. Chronic myelogenous leukaemia contains a stem cell fraction and targeting this population of cells is an attractive therapeutic strategy. Here, the authors demonstrate that the stem cells take up dipeptides and that inhibiting the dipeptide transporter could reduce the number of these stem cells in mice.
Collapse
Affiliation(s)
- Kazuhito Naka
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yoshie Jomen
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kaori Ishihara
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Junil Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Eun-Jin Bae
- Exploratory Project on Cancer Stem Cells, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.,CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Robert P Mohney
- Metabolon, Inc., 617 Davis Drive Suite 400, Durham, North Carolina 27713, USA
| | - Steven M Stirdivant
- Metabolon, Inc., 617 Davis Drive Suite 400, Durham, North Carolina 27713, USA
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dong-Wook Kim
- Department of Hematology, Seoul St Mary's Hospital, Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701, Republic of Korea
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo 108-8639, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, California 94305, USA
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akira Ooshima
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| | - Seong-Jin Kim
- CHA Cancer Institute and Department of Biomedical Science, CHA University, CHA Bio Complex, 335 Pangyo-ro, Bundang-ku, Seongnam, Kyunggi-do 463-400, Republic of Korea
| |
Collapse
|
10
|
Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M. While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 2012; 61:59-74. [PMID: 23229677 DOI: 10.1007/s00005-012-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
It is a well-acclaimed fact that proteins expressed as a consequence of oncogenic fusions, mutations or amplifications can facilitate ectopic protein-protein interactions that re-wire signal dissemination pathways, in a manner that escalates malignancy. BCR-ABL-mediated signal transduction cascades in leukemic cells are assembled and modulated by a finely controlled network of protein-protein interactions, mediated by characteristic signaling domains and their respective binding motifs. BCR-ABL functions in a cell context-specific and cell type-specific manner to integrate signals that affect uncontrolled cellular proliferation. In this review, we draw attention to the recent progress made in outlining resistance against TRAIL-mediated apoptosis and diametrically opposed roles of miRNAs in BCR-ABL-positive leukemic cells. BCR-ABL governs carcinogenesis through well-organized web of antiapoptotic proteins and over-expressed oncomirs which target death receptors and pro-apoptotic genes. Set of oncomirs which inversely correlate with expression of TRAIL via suppression of SMAD is an important dimension which is gradually gaining attention of the researchers. Contrary to this, some current findings show a new role of BCR-ABL in nucleus with spotlight on apoptosis. It seems obvious that genetic heterogeneity of leukemias poses therapeutic challenges, and pharmacological agents that target components of the cancer promoting nano-machinery still need broad experimental validation to be considered competent as a component of the therapeutic arsenal for this group of diseases. Rapidly developing technologies are empowering us to explain the molecular "nature" of a patient and/or tumor and with this integration of personalized medicine, with maximized efficacy, cost effectiveness will hopefully improve survival chances of the patient.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
11
|
Ng AP. Hematopoietic stem cells, progenitor cells and leukemic stem cells in adult myeloproliferative neoplasms. Leuk Lymphoma 2012; 54:922-33. [PMID: 23013358 DOI: 10.3109/10428194.2012.734615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The understanding of myeloproliferative neoplasms has changed dramatically since Dameshek proposed his classification over 50 years ago. Our knowledge of the types of cells which constitute the hematopoietic system and of how they are regulated has also appreciated significantly over this time. This review relates what is currently known about the acquired genetic mutations associated with adult myeloproliferative neoplasms to how they lead to the hematopoietic perturbations of myeloproliferative disease. There is a particular focus on how stem and progenitor cell compartments are affected by BCR-ABL1 and JAK2V617F mutations, and the particular issue of resistance of leukemic stem cells to conventional and targeted therapies.
Collapse
Affiliation(s)
- Ashley P Ng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|