1
|
Kang J, Kim AH, Jeon I, Oh J, Jang IJ, Lee S, Cho JY. Endogenous metabolic markers for predicting the activity of dihydropyrimidine dehydrogenase. Clin Transl Sci 2021; 15:1104-1111. [PMID: 34863048 PMCID: PMC9099117 DOI: 10.1111/cts.13203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
Five‐fluorouracil (5‐FU) is a chemotherapeutic agent that is mainly metabolized by the rate‐limiting enzyme dihydropyrimidine dehydrogenase (DPD). The DPD enzyme activity deficiency involves a wide range of severities. Previous studies have demonstrated the effect of a DPYD single nucleotide polymorphism on 5‐FU efficacy and highlighted the importance of studying such genes for cancer treatment. Common polymorphisms of DPYD in European ancestry populations are less frequently present in Koreans. DPD is also responsible for the conversion of endogenous uracil (U) into dihydrouracil (DHU). We quantified U and DHU in plasma samples of healthy male Korean subjects, and samples were classified into two groups based on DHU/U ratio. The calculated DHU/U ratios ranged from 0.52 to 7.12, and the two groups were classified into the 10th percentile and 90th percentile for untargeted metabolomics analysis using liquid chromatography‐quantitative time‐of‐flight‐mass spectrometry. A total of 4440 compounds were detected and filtered out based on a coefficient of variation below 30%. Our results revealed that six metabolites differed significantly between the high activity group and low activity group (false discovery rate q‐value < 0.05). Uridine was significantly higher in the low DPD activity group and is a precursor of U involved in pyrimidine metabolism; therefore, we speculated that DPD deficiency can influence uridine levels in plasma. Furthermore, the cutoff values for detecting DPD deficient patients from previous studies were unsuitable for Koreans. Our metabolomics approach is the first study that reported the DHU/U ratio distribution in healthy Korean subjects and identified a new biomarker of DPD deficiency.
Collapse
Affiliation(s)
- Jihyun Kang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Inseung Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Kuilenburg ABPV, Meijer J, Tanck MWT, Dobritzsch D, Zoetekouw L, Dekkers LL, Roelofsen J, Meinsma R, Wymenga M, Kulik W, Büchel B, Hennekam RCM, Largiadèr CR. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim Biophys Acta Mol Basis Dis 2016; 1862:754-762. [PMID: 26804652 DOI: 10.1016/j.bbadis.2016.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 12/22/2022]
Abstract
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers. 34 SNPs were detected in DPYD and 15 SNPs were associated with altered plasma concentrations of pyrimidine metabolites. DPD activity was significantly associated with the plasma concentrations of uracil, the presence of a specific DPYD mutation (c.1905+1G>A) and the combined presence of three risk variants in DPYD (c.1905+1G>A, c.1129-5923C>G, c.2846A>T), but not with an altered uracil/dihydrouracil (U/UH2) ratio. Various haplotypes were associated with different DPD activities (haplotype D3, a decreased DPD activity; haplotype F2, an increased DPD activity). Functional analysis of eight recombinant mutant DPD enzymes showed a reduced DPD activity, ranging from 35% to 84% of the wild-type enzyme. Analysis of a DPD homology model indicated that the structural effect of the novel p.G401R mutation is most likely minor. The clinical relevance of the p.D949V mutation was demonstrated in a cancer patient heterozygous for the c.2846A>T mutation and a novel nonsense mutation c.1681C>T (p.R561X), experiencing severe grade IV toxicity. Our studies showed that the endogenous levels of uracil and the U/UH2 ratio are poor predictors of an impaired DPD activity. Loading studies with uracil to identify patients with a DPD deficiency warrants further investigation.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands.
| | - Judith Meijer
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Doreen Dobritzsch
- Department of Chemistry, Biomedical Center, Uppsala University, S-751 24 Uppsala, Sweden
| | - Lida Zoetekouw
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Jeroen Roelofsen
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Rutger Meinsma
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Machteld Wymenga
- Department of Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Wim Kulik
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Büchel
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raoul C M Hennekam
- Departments of Clinical Chemistry, Pediatrics, Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|