1
|
Zhao YC, Sun ZH, Li JK, Liu HY, Zhang BK, Xie XB, Fang CH, Sandaradura I, Peng FH, Yan M. Individualized dosing parameters for tacrolimus in the presence of voriconazole: a real-world PopPK study. Front Pharmacol 2024; 15:1439232. [PMID: 39318775 PMCID: PMC11419969 DOI: 10.3389/fphar.2024.1439232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Objectives Significant increase in tacrolimus exposure was observed during co-administration with voriconazole, and no population pharmacokinetic model exists for tacrolimus in renal transplant recipients receiving voriconazole. To achieve target tacrolimus concentrations, an optimal dosage regimen is required. This study aims to develop individualized dosing parameters through population pharmacokinetic analysis and simulate tacrolimus concentrations under different dosage regimens. Methods We conducted a retrospective study of renal transplant recipients who were hospitalized at the Second Xiangya Hospital of Central South University between January 2016 and March 2021. Subsequently, pharmacokinetic analysis and Monte Carlo simulation were employed for further analysis. Results Nineteen eligible patients receiving tacrolimus and voriconazole co-therapy were included in the study. We collected 167 blood samples and developed a one-compartment model with first-order absorption and elimination to describe the pharmacokinetic properties of tacrolimus. The final typical values for tacrolimus elimination rate constant (Ka), apparent volume of distribution (V/F), and apparent oral clearance (CL/F) were 8.39 h-1, 2690 L, and 42.87 L/h, respectively. Key covariates in the final model included voriconazole concentration and serum creatinine. Patients with higher voriconazole concentration had lower tacrolimus CL/F and V/F. In addition, higher serum creatinine levels were associated with lower tacrolimus CL/F. Conclusion Our findings suggest that clinicians can predict tacrolimus concentration and estimate optimal tacrolimus dosage based on voriconazole concentration and serum creatinine. The effect of voriconazole concentration on tacrolimus concentration was more significant than serum creatinine. These findings may inform clinical decision-making in the management of tacrolimus and voriconazole therapy in solid organ transplant recipients.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Zhi-Hua Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Kai Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Huai-Yuan Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Xu-Biao Xie
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Hua Fang
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Indy Sandaradura
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, Sydney, NSW, Australia
| | - Feng-Hua Peng
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| |
Collapse
|
2
|
Alghamdi A, Seay S, Hooper DK, Varnell CD, Darland L, Mizuno T, Lazear D, Ramsey LB. Tacrolimus pharmacokinetics are influenced by CYP3A5, age, and concomitant fluconazole in pediatric kidney transplant patients. Clin Transl Sci 2023; 16:1768-1778. [PMID: 37340713 PMCID: PMC10582663 DOI: 10.1111/cts.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
Tacrolimus, the most common immunosuppressant for organ transplant, has a narrow therapeutic range and is metabolized by CYP3A4/5. Trough concentration monitoring and dosing adjustments are used to reach a therapeutic range. CYP3A5 intermediate and normal metabolizers (*1 allele carriers; IM/NM) demonstrate faster tacrolimus metabolism than poor metabolizers (PM). We analyzed the electronic health records of 93 patients aged <21 years for the first 8 weeks after a kidney transplant between January 2010 and December 2021. The target tacrolimus trough was 10-15 ng/mL in the first 4 weeks and 7-10 ng/mL in the next 4 weeks. Banked DNA was collected and genotyped for CYP3A5*3, *6, *7, and *8 alleles. We found that CYP3A5 IM/NM (n = 21) took longer than PM (n = 72) to reach the therapeutic range (7 vs. 4 days, p = 0.048). IM/NM had more dose adjustments (8 vs. 6, p = 0.025) and needed >150% of the required daily dose compared with PM. The concentration/dose ratio was influenced by age and concomitant fluconazole (p = 0.0003, p = 0.034, respectively) and the average daily dose decreases with age in CYP3A5 PM (p = 0.001). Tremors were more common in patients who ever had a trough concentration >15 ng/mL compared with those who never had a trough concentration >15 ng/mL (OR 3.31, 95% CI 1.03-8.98, p = 0.038). Using standard dosing, CYP3A5 IM/NM took longer to reach the goal range and require more dose adjustments and higher doses than PM. Preemptive genotyping could decrease the number of dose changes necessary to reach a therapeutic dose. We have implemented pre-transplant CYP3A5 testing at our institution.
Collapse
Affiliation(s)
- Alaa Alghamdi
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiOhioUSA
- College of Clinical PharmacyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Sarah Seay
- Department of ChemistryVirginia Tech Center for Drug DiscoveryBlacksburgVirginiaUSA
| | - David K. Hooper
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Nephrology & Hypertension, James M. Anderson Center fo Health Systems ExcellenceCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Charles D. Varnell
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Nephrology & Hypertension, James M. Anderson Center fo Health Systems ExcellenceCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Leanna Darland
- Division of PharmacyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Tomoyuki Mizuno
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Clinical PharmacologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Danielle Lazear
- Division of PharmacyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
- Present address:
Eurofins Transplant Genomics, Framingham, Massachusetts, USA
| | - Laura B. Ramsey
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Divisions of Clinical Pharmacology & Research in Patient ServicesCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
3
|
Kim JS, Shim S, Yee J, Choi KH, Gwak HS. Effects of CYP3A4*22 polymorphism on trough concentration of tacrolimus in kidney transplantation: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1201083. [PMID: 37564175 PMCID: PMC10409991 DOI: 10.3389/fphar.2023.1201083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose: Tacrolimus (Tac) is a widely used immunosuppressive agent in kidney transplantation. Cytochrome P450 (CYP), especially CYP3A4 enzymes are responsible for the metabolism of drugs. However, the correlation between plasma Tac concentration and CYP3A4*22 gene variants is controversial. This meta-analysis aims to evaluate the association between CYP3A4*22 polymorphism and the dose-adjusted trough concentration (C0/D) of Tac in adult kidney transplant patients. Methods: We conducted a literature review for qualifying studies using the PubMed, Web of Science, and Embase databases until July 2023. For the continuous variables (C0/D and daily dose), mean difference (MD) and corresponding 95% confidence intervals (CIs) were calculated to evaluate the association between the CYP3A4 * 22 and Tac pharmacokinetics. We performed an additional analysis on the relationship of CYP3A5*3 with Tac PKs and analyzed the effects of CYP3A4*22 in CYP3A5 non-expressers. Results: Overall, eight eligible studies with 2,683 renal transplant recipients were included in this meta-analysis. The CYP3A4*22 allele was significantly associated with a higher C0/D (MD 0.57 ng/mL/mg (95% CI: 0.28 to 0.86; p = 0.0001) and lower mean daily dose requirement (MD -2.02 mg/day, 95% CI: -2.55 to -1.50; p < 0.00001). An additional meta-analysis demonstrated that carrying the CYP3A5*3 polymorphism greatly impacted Tac blood concentration. From the result with CYP3A5 non-expressers, CYP3A4*22 showed significant effects on the Tac C0/D and dose requirement even after adjusting the effect of CYP3A5*3. Conclusion: Patients with CYP3A4*22 allele showed significantly higher plasma C0/D of Tac and required lower daily dose to achieve the therapeutic trough level after kidney transplantation. These findings of our meta-analysis may provide further evidence for the effects of genetic polymorphism in CYP3A4 on the PKs of Tac, which will improve individualized treatment in a clinical setting.
Collapse
Affiliation(s)
- Jung Sun Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sunyoung Shim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Hee Choi
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Pasternak AL, Park JM, Pai MP. Predictive Capacity of Population Pharmacokinetic Models for the Tacrolimus Dose Requirements of Pediatric Solid Organ Transplant Recipients. Ther Drug Monit 2023; 45:95-101. [PMID: 36624576 PMCID: PMC9832243 DOI: 10.1097/ftd.0000000000001002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transplant recipients require individualized tacrolimus doses to maximize graft survival. Multiple pediatric tacrolimus population pharmacokinetic (PopPK) models incorporating CYP3A5 genotype and other covariates have been developed. Identifying the optimal popPK model is necessary for clinical implementation in pediatric solid organ transplant. The primary objective was to compare the dose prediction capabilities of the developed models in pediatric kidney and heart transplant recipients. METHODS Pediatric kidney or heart transplant recipients treated with tacrolimus and available CYP3A5 genotype data were identified. The initial weight-based tacrolimus dose and first therapeutic tacrolimus dose were collected retrospectively. Three published popPK models were used to predict the tacrolimus dose required to achieve a tacrolimus trough concentration of 10 ng/mL. Model dose predictions were compared with the initial and first therapeutic doses using Friedman test. The first therapeutic dose was plotted against the model-predicted dose. RESULTS The median initial dose approximately 2-fold lower than the first therapeutic dose for CYP3A5 expressers. The Chen et al model provided the closest estimates to the first therapeutic dose for kidney transplant recipients; however, all 3 models tended to underpredict the observed therapeutic dose. For heart transplant recipients, Andrews et al model predicted doses that were higher than the initial dose but similar to the actual therapeutic dose. CONCLUSIONS Weight-based tacrolimus dosing appears to underestimate the tacrolimus dose requirements. The development of a separate popPK model is necessary for heart transplant recipients. A genotype-guided strategy based on the Chen et al model provided the best estimates for doses in kidney transplant recipients and should be prospectively evaluated.
Collapse
Affiliation(s)
- Amy L. Pasternak
- University of Michigan College of Pharmacy, Department of Clinical Pharmacy, 428 Church St. Ann Arbor, MI 48109
- University of Michigan Health, Michigan Medicine, Department of Pharmacy, 1500 East Medical Center Drive, UHB2D301 / 5008, Ann Arbor, MI 48109
| | - Jeong M. Park
- University of Michigan College of Pharmacy, Department of Clinical Pharmacy, 428 Church St. Ann Arbor, MI 48109
- University of Michigan Health, Michigan Medicine, Department of Pharmacy, 1500 East Medical Center Drive, UHB2D301 / 5008, Ann Arbor, MI 48109
| | - Manjunath P. Pai
- University of Michigan College of Pharmacy, Department of Clinical Pharmacy, 428 Church St. Ann Arbor, MI 48109
| |
Collapse
|
5
|
Pharmacogenetic Aspects of Drug Metabolizing Enzymes and Transporters in Pediatric Medicine: Study Progress, Clinical Practice and Future Perspectives. Paediatr Drugs 2023; 25:301-319. [PMID: 36707496 DOI: 10.1007/s40272-023-00560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
As the activity of certain drug metabolizing enzymes or transporter proteins can vary with age, the effect of ontogenetic and genetic variation on the activity of these enzymes is critical for the accurate prediction of treatment outcomes and toxicity in children. This makes pharmacogenetic research in pediatrics particularly important and urgently needed, but also challenging. This review summarizes pharmacogenetic studies on the effects of genetic polymorphisms on pharmacokinetic parameters and clinical outcomes in pediatric populations for certain drugs, which are commonly prescribed by clinicians across multiple therapeutic areas in a general hospital, organized from those with the most to the least pediatric evidence among each drug category. We also further discuss the research status of the gene-guided dosing regimens and clinical implementation of pediatric pharmacogenetics. More and more drug-gene interactions are demonstrated to have clinical validity for children, and pharmacogenomics in pediatrics have shown evidence-based benefits to enhance the efficacy and precision of existing drug dosing regimens in several therapeutic areas. However, the most important limitation to the implementation is the lack of high-quality, rigorous pediatric prospective clinical studies, so adequately powered interventional clinical trials that support incorporation of pharmacogenetics into the care of children are still needed.
Collapse
|
6
|
Choi JS, Ko H, Kim HK, Chung C, Han A, Min SK, Ha J, Kang HG, Ha IS, Min S. Effects of tacrolimus intrapatient variability and CYP3A5 polymorphism on the outcomes of pediatric kidney transplantation. Pediatr Transplant 2022; 26:e14297. [PMID: 35466485 DOI: 10.1111/petr.14297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND The intrapatient variability (IPV) of tacrolimus (Tac) is associated with the long-term outcome of kidney transplantation. The CYP3A single-nucleotide polymorphism (SNP) may affect the IPV of Tac. We investigated the impact of IPV and genetic polymorphism in pediatric patients who received kidney transplantation. METHODS A total of 202 pediatric renal transplant recipients from 2000 to 2016 were analyzed retrospectively. The IPV was calculated between 6 and 12 months after surgery. Among these patients, CYP3A5 polymorphism was analyzed in 67 patients. RESULTS The group with high IPV had a significantly higher rate of de novo donor-specific human leukocyte antigen antibodies (dnDSA) development (35.7% vs. 16.7%, p = .003). The high IPV group also had a higher incidence of T-cell-mediated rejection (TCMR; p < .001). The high IPV had no significant influence on Epstein-Barr virus, cytomegalovirus, and BK virus viremia but was associated with the incidence of posttransplant lymphoproliferative disorders (p = .003). Overall, the graft survival rate was inferior in the high IPV group (p < .001). The CYP3A5 SNPs did not significantly affect the IPV of Tac. In the CYP3A5 expressor group, however, the IPV was significantly associated with the TCMR-free survival rate (p < .001). CONCLUSION The IPV of Tac had a significant impact on dnDSA development, occurrence of acute TCMR, and graft failure in pediatric patients who received renal transplantation. CYP3A5 expressors with high IPV of Tac showed worse outcomes, while the CYP3A5 polymorphism had no impact on IPV of Tac.
Collapse
Affiliation(s)
- Jin Sun Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyunmin Ko
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hyo Kee Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Chung
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ahram Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Kee Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hee Gyung Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Il Soo Ha
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Liu L, Huang X, Zhou Y, Han Y, Zhang J, Zeng F, Huang Y, Zhou H, Zhang Y. CYP3A4/5 genotypes and age codetermine tacrolimus concentration and dosage in pediatric heart transplant recipients. Int Immunopharmacol 2022; 111:109164. [PMID: 35998509 DOI: 10.1016/j.intimp.2022.109164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Tacrolimus (TAC) is the cornerstone of immunosuppressive therapy for pediatric heart transplantation (HTx) recipients. However, little information is known on the interaction of developmental and genetic variants on TAC disposition in this population, which makes TAC dose optimization more difficult. The aim of study was to investigate the relationship between genotypes and age on TAC concentrations and dosage during the early post-operation period in pediatric HTx recipients. Sixty-six pediatric HTx recipients were enrolled and divided into three groups according to the age (<6, ≥6-≤12, 12-18 years old). CYP3A4/5, POR and ABCB1 polymorphisms were genotyped. The associations between genotypes and age on TAC dose-adjusted trough concentrations (C0/D), dose requirement as well as acute kidney injury (AKI) were evaluated. CYP3A5*3 and CYP3A4*1G were significantly correlated with TAC C0/D and dose requirement in the pediatric recipients ≥ 6 years. The C0/D in children aged ≥ 6-≤12 years and 12-18 years is 2.8 and 4.2 fold of these < 6 years old, respectively. TAC dose requirements in children aged < 6 years were 2.4 times and 3.5 times of these aged ≥ 6-≤12 years and 12-18 years, respectively. Among the same CYP3A5*3 or CYP3A4*1G genotypes, age was positively increased with TAC C0/D and negatively correlated with targeted dose. No genetic variants were found to be associated with AKI during the early post-operation period. CYP3A4/5 genotypes and age should be taken into consideration to TAC dosage in pediatric HTx recipients.
Collapse
Affiliation(s)
- Li Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Xiao Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Ying Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yong Han
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yifei Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hong Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| |
Collapse
|
8
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
9
|
Jiang Z, Hu N. Effect of UGT polymorphisms on pharmacokinetics and adverse reactions of mycophenolic acid in kidney transplant patients. Pharmacogenomics 2021; 22:1019-1040. [PMID: 34581204 DOI: 10.2217/pgs-2021-0087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is a common immunosuppressive drug for kidney transplantation patients, and is characterized by a narrow therapeutic index and significant individual variability. UGTs are the main enzymes responsible for the metabolism of MPA. Although, many studies have focused on the relationship between UGT polymorphisms and pharmacokinetics and adverse reactions of MPA, the conclusion are controversial. We reviewed the relevant literature and summarized the significant influences of UGT polymorphisms, such as UGT1A8 (rs1042597, rs17863762), UGT1A9 (rs72551330, rs6714486, rs17868320, rs2741045, rs2741045) and UGT2B7 (rs7438135, rs7439366, rs7662029), on the pharmacokinetics of MPA and its metabolites and adverse reactions. The review provides a reference for guiding the individualized administration of MPA and reducing adverse reactions to MPA.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, Jiangsu Province, Changzhou, 213000, China
| |
Collapse
|
10
|
Leino AD, Park JM, Pasternak AL. Impact of CYP3A5 phenotype on tacrolimus time in therapeutic range and clinical outcomes in pediatric renal and heart transplant recipients. Pharmacotherapy 2021; 41:649-657. [PMID: 34129685 DOI: 10.1002/phar.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/11/2022]
Abstract
STUDY OBJECTIVE This study investigated the effect of CYP3A5 phenotype on time in therapeutic range (TTR) of tacrolimus post-transplant in pediatric patients. DESIGN AND DATA SOURCE This retrospective study assessed medical records of pediatric kidney and heart recipients with available CYP3A5 genotype for tacrolimus dosing, troughs, and the clinical events (biopsy-proven acute rejection [BPAR] and de novo donor-specific antibodies [dnDSA]). MEASUREMENTS AND MAIN RESULTS The primary outcome, mean TTR in the first 90 days post-transplant, was 9.0% (95% CI: -16.1, -1.9) lower in CYP3A5 expressers (p = 0.014) when adjusting for time to therapeutic concentration and organ type. There was no difference between CYP3A5 phenotypes in time to the first clinical event using TTR during the first 90 days. When applying TTR over the first year, there was a significant difference in event-free survival (EFS) which was 50.0% for CYP3A5 expressers/TTR < 35%, 45.5% for expressers/TTR ≥ 35%, 38.1% for nonexpressers/TTR < 35%, and 72.9% for nonexpressers/TTR ≥ 35% (log-rank p = 0.03). A post hoc analysis of EFS identified CYP3A5 expressers had lower EFS compared to nonexpressers in patients with TTR ≥ 35% (p = 0.04) but no difference among patients with TTR < 35% (p = 0.6). CONCLUSIONS The relationship between TTR and CYP3A5 phenotype suggests that achieving a TTR ≥ 35% during the first year may be a modifiable factor to attenuate the risk of BPAR and dnDSA.
Collapse
Affiliation(s)
- Abbie D Leino
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy L Pasternak
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Turolo S, Edefonti A, Ghio L, Testa S, Morello W, Montini G. CYP and SXR gene polymorphisms influence in opposite ways acute rejection rate in pediatric patients with renal transplant. BMC Pediatr 2020; 20:246. [PMID: 32450827 PMCID: PMC7249618 DOI: 10.1186/s12887-020-02152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background We evaluated the role of CYP3A5, ABCB1 and SXR gene polymorphisms in the occurrence of acute kidney rejection in a cohort of pediatric renal transplant recipients. Methods Forty-nine patients were genotyped for CYP3A5, ABCB1 and SXR polymorphisms and evaluated with tacrolimus through levels in a retrospective monocenter study. Results Patients with the A allele of CYP3A5 treated with tacrolimus had a higher risk of acute rejection than those without the A allele, while patients carrying the homozygous GG variant for SXR A7635GG did not show any episode of acute rejection. Conclusion Genetic analysis of polymorphisms implicated in drug metabolism and tacrolimus trough levels may help to forecast the risk of acute rejection and individualize drug dosage in children undergoing renal transplantation.
Collapse
Affiliation(s)
- Stefano Turolo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy.
| | - Alberto Edefonti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy
| | - Luciana Ghio
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy
| | - Sara Testa
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy
| | - William Morello
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy
| | - Giovanni Montini
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico UOC Nefrologia Dialisi e Trapianto pediatrico, Via della, Commenda 9, 20122, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Tönshoff B. Immunosuppressive therapy post-transplantation in children: what the clinician needs to know. Expert Rev Clin Immunol 2020; 16:139-154. [DOI: 10.1080/1744666x.2020.1714437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital, Heidelberg, Germany
| |
Collapse
|
13
|
Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2020; 20:553-562. [PMID: 31902947 DOI: 10.1038/s41397-019-0144-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/29/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Tacrolimus is an immunosuppressive drug widely used in kidney transplantation. Cytochrome P450 3A5 (CYP3A5) protein is involved in tacrolimus metabolism. Single nucleotide polymorphism in the CYP3A5 gene (6986A>G) results in alteration in metabolic activity of CYP3A5 protein which eventually affects the tacrolimus concentration. Patients with CYP3A5 expresser genotypes (A/A *1/*1 and A/G *1/*3) metabolize tacrolimus more rapidly than CYP3A5 nonexpressers (G/G *3/*3). We performed meta-analysis to estimate the effect of CYP3A5 polymorphism on the trough concentration-dose ratio (Co/D) and risk of renal allograft rejection with similar post-transplant periods and Asian vs. European populations. Our results showed that the tacrolimus Co/D ratio is significantly lower in CYP3A5 expresser group as compared with nonexpresser in Asian as well as in European populations at any post-transplant period (p < 0.00001). No significant association was found with renal allograft rejection episodes between expressers and nonexpressers in European populations (OR: 1.12; p = 0.47). Interestingly, Asian population (with expresser genotypes) and patients after 3 years post-transplantation (with expresser genotypes) have a higher risk of rejection (OR: 1.62; p < 0.05), (OR: 1.68; p < 0.05), respectively. This could be due to high prevalence of expresser genotypes in Asian population. Few tacrolimus-based studies are identified with long-term graft survival. There is a need to have more studies looking for long-term graft survival in expresser as well as no-expresser groups especially in Asian populations who have high frequency of CYP3A5 functional genotype.
Collapse
Affiliation(s)
- Abdul Rafay Khan
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Ali Raza
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Sadaf Firasat
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Aiysha Abid
- Centre for Human Genetics and Molecular Medicine, Sindh Institute of Urology and Transplantation, Karachi, Pakistan.
| |
Collapse
|
14
|
Mohamed ME, Schladt DP, Guan W, Wu B, van Setten J, Keating B, Iklé D, Remmel RP, Dorr CR, Mannon RB, Matas AJ, Israni AK, Oetting WS, Jacobson PA. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am J Transplant 2019; 19:2795-2804. [PMID: 30953600 PMCID: PMC6763344 DOI: 10.1111/ajt.15385] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Tacrolimus trough and dose requirements vary dramatically between individuals of European and African American ancestry. These differences are less well described in other populations. We conducted an observational, prospective, multicenter study from which 2595 kidney transplant recipients of European, African, Native American, and Asian ancestry were studied for tacrolimus trough, doses, and genetic determinants of metabolism. We studied the well-known variants and conducted a CYP3A4/5 gene-wide analysis to identify new variants. Daily doses, and dose-normalized troughs were significantly different between the four groups (P < .001). CYP3A5*3 (rs776746) was associated with higher dose-normalized tacrolimus troughs in all groups but occurred at different allele frequencies and had differing effect sizes. The CYP3A5*6 (rs10264272) and *7 (rs413003343) variants were only present in African Americans. CYP3A4*22 (rs35599367) was not found in any of the Asian ancestry samples. We identified seven suggestive variants in the CYP3A4/5 genes associated with dose-normalized troughs in Native Americans (P = 1.1 × 10-5 -8.8 × 10-6 ) and one suggestive variant in Asian Americans (P = 5.6 × 10-6 ). Tacrolimus daily doses and dose-normalized troughs vary significantly among different ancestry groups. We identified potential new variants important in Asians and Native Americans. Studies with larger populations should be conducted to assess the importance of the identified suggestive variants.
Collapse
Affiliation(s)
- Moataz E. Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA,Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | | | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan Keating
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rory P. Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Casey R. Dorr
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN
| | | | - Arthur J. Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Ajay K. Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN, USA,Department of Medicine, University of Minnesota, Hennepin Healthcare, Minneapolis, MN,Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S. Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A. Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
15
|
Hendijani F, Azarpira N, Kaviani M. Effect of CYP3A5*1 expression on tacrolimus required dose for transplant pediatrics: A systematic review and meta-analysis. Pediatr Transplant 2018; 22:e13248. [PMID: 29920880 DOI: 10.1111/petr.13248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/16/2022]
Abstract
This systematic review was designed to find out optimal tacrolimus dose in pediatrics according to their CYP3A5*1 genotype by performing meta-analysis. PubMed, Scopus, ISI web of Science, ProQuest, Cochrane library, and clinicaltrail.gov were systematically searched to find studies in which tacrolimus dose and/or blood concentration and/or concentration-to-dose (C/D) ratio were determined in genotype groups of CYP3A5*1 in pediatric population. Data were extracted at 14 time points post-transplantation and meta-analysis of mean and SD was performed. In all, 11 studies including 596 pediatric transplant recipients were entered into systematic review and meta-analysis. Analysis of tacrolimus required dose, blood concentration, and C/D ratio in 14 time points post-transplantation resulted in significant differences between expressers and non-expressers of CYP3A5*1. It seems that 0.06 mg/kg/day higher tacrolimus dose in expressers can produce same blood level as non-expressers. Using results of TDM for tacrolimus dose adjustment, it takes about 1 month for patients to reach stable and optimum tacrolimus blood concentration. This is too long time period which increases the risk of immunosuppressive over/under-dose and drug toxicity or organ rejection. Considering our results, defining genetic profile helps to predict the individual required dose more rapidly, actually before beginning of treatment.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Faculty of Pharmacy, Department of Pharmacognosy and Pharmaceutical Biotechnology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|