1
|
Shekar K, Abdul-Aziz MH, Cheng V, Burrows F, Buscher H, Cho YJ, Corley A, Diehl A, Gilder E, Jakob SM, Kim HS, Levkovich BJ, Lim SY, McGuinness S, Parke R, Pellegrino V, Que YA, Reynolds C, Rudham S, Wallis SC, Welch SA, Zacharias D, Fraser JF, Roberts JA. Antimicrobial Exposures in Critically Ill Patients Receiving Extracorporeal Membrane Oxygenation. Am J Respir Crit Care Med 2023; 207:704-720. [PMID: 36215036 DOI: 10.1164/rccm.202207-1393oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Data suggest that altered antimicrobial concentrations are likely during extracorporeal membrane oxygenation (ECMO). Objectives: The primary aim of this analysis was to describe the pharmacokinetics (PKs) of antimicrobials in critically ill adult patients receiving ECMO. Our secondary aim was to determine whether current antimicrobial dosing regimens achieve effective and safe exposure. Methods: This study was a prospective, open-labeled, PK study in six ICUs in Australia, New Zealand, South Korea, and Switzerland. Serial blood samples were collected over a single dosing interval during ECMO for 11 antimicrobials. PK parameters were estimated using noncompartmental methods. Adequacy of antimicrobial dosing regimens were evaluated using predefined concentration exposures associated with maximal clinical outcomes and minimal toxicity risks. Measurements and Main Results: We included 993 blood samples from 85 patients. The mean age was 44.7 ± 14.4 years, and 61.2% were male. Thirty-eight patients (44.7%) were receiving renal replacement therapy during the first PK sampling. Large variations (coefficient of variation of ⩾30%) in antimicrobial concentrations were seen leading to more than fivefold variations in all PK parameters across all study antimicrobials. Overall, 70 (56.5%) concentration profiles achieved the predefined target concentration and exposure range. Target attainment rates were not significantly different between modes of ECMO and renal replacement therapy. Poor target attainment was observed across the most frequently used antimicrobials for ECMO recipients, including for oseltamivir (33.3%), piperacillin (44.4%), and vancomycin (27.3%). Conclusions: Antimicrobial PKs were highly variable in critically ill patients receiving ECMO, leading to poor target attainment rates. Clinical trial registered with the Australian New Zealand Clinical Trials Registry (ACTRN12612000559819).
Collapse
Affiliation(s)
- Kiran Shekar
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vesa Cheng
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Hergen Buscher
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
- St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Amanda Corley
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- School of Nursing and Midwifery, Griffith University, Nathan, Queensland, Australia
| | - Arne Diehl
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Eileen Gilder
- Experiential Development and Graduate Education and Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Stephan M Jakob
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Hyung-Sook Kim
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bianca J Levkovich
- Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sung Yoon Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Shay McGuinness
- School of Nursing, The University of Auckland, Auckland, New Zealand
| | - Rachael Parke
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Vincent Pellegrino
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
- School of Public Health and Preventive Medicine and
| | - Yok-Ai Que
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - Claire Reynolds
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Sam Rudham
- Department of Intensive Care Medicine, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Steven C Wallis
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - David Zacharias
- Cardiothoracic and Vascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand
| | - John F Fraser
- Adult Intensive Care Services and Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Intensive Care Medicine and Pharmacy, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; and
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| |
Collapse
|
2
|
Corona A, Cattaneo D, Latronico N. Antibiotic Therapy in the Critically Ill with Acute Renal Failure and Renal Replacement Therapy: A Narrative Review. Antibiotics (Basel) 2022; 11:1769. [PMID: 36551426 PMCID: PMC9774462 DOI: 10.3390/antibiotics11121769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The outcome for critically ill patients is burdened by a double mortality rate and a longer hospital stay in the case of sepsis or septic shock. The adequate use of antibiotics may impact on the outcome since they may affect the pharmacokinetics (Pk) and pharmacodynamics (Pd) of antibiotics in such patients. Acute renal failure (ARF) occurs in about 50% of septic patients, and the consequent need for continuous renal replacement therapy (CRRT) makes the renal elimination rate of most antibiotics highly variable. Antibiotics doses should be reduced in patients experiencing ARF, in accordance with the glomerular filtration rate (GFR), whereas posology should be increased in the case of CRRT. Since different settings of CRRT may be used, identifying a standard dosage of antibiotics is very difficult, because there is a risk of both oversimplification and failing the therapeutic efficacy. Indeed, it has been seen that, in over 25% of cases, the antibiotic therapy does not reach the necessary concentration target mainly due to lack of the proper minimal inhibitory concentration (MIC) achievement. The aim of this narrative review is to clarify whether shared algorithms exist, allowing them to inform the daily practice in the proper antibiotics posology for critically ill patients undergoing CRRT.
Collapse
Affiliation(s)
- Alberto Corona
- Accident & Emergency and Anaesthesia and Intensive Care Medicine Department, Esine and Edolo Hospitals, ASST Valcamonica, 25040 Brescia, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, 20157 Milan, Italy
| | - Nicola Latronico
- University Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25100 Brescia, Italy
| |
Collapse
|
3
|
Matusik E, Boidin C, Friggeri A, Richard JC, Bitker L, Roberts JA, Goutelle S. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther Drug Monit 2022; 44:86-102. [PMID: 34772891 DOI: 10.1097/ftd.0000000000000941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/16/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Antibiotics are frequently used in patients receiving intermittent or continuous renal replacement therapy (RRT). Continuous renal replacement may alter the pharmacokinetics (PK) and the ability to achieve PK/pharmacodynamic (PD) targets. Therapeutic drug monitoring (TDM) could help evaluate drug exposure and guide antibiotic dosage adjustment. The present review describes recent TDM data on antibiotic exposure and PK/PD target attainment (TA) in patients receiving intermittent or continuous RRT, proposing practical guidelines for performing TDM. METHODS Studies on antibiotic TDM performed in patients receiving intermittent or continuous RRT published between 2000 and 2020 were searched and assessed. The authors focused on studies that reported data on PK/PD TA. TDM recommendations were based on clinically relevant PK/PD relationships and previously published guidelines. RESULTS In total, 2383 reports were retrieved. After excluding nonrelevant publications, 139 articles were selected. Overall, 107 studies reported PK/PD TA for 24 agents. Data were available for various intermittent and continuous RRT techniques. The study design, TDM practice, and definition of PK/PD targets were inconsistent across studies. Drug exposure and TA rates were highly variable. TDM seems to be necessary to control drug exposure in patients receiving intermittent and continuous RRT techniques, especially for antibiotics with narrow therapeutic margins and in critically ill patients. Practical recommendations can provide insights on relevant PK/PD targets, sampling, and timing of TDM for various antibiotic classes. CONCLUSIONS Highly variable antibiotic exposure and TA have been reported in patients receiving intermittent or continuous RRT. TDM for aminoglycosides, beta-lactams, glycopeptides, linezolid, and colistin is recommended in patients receiving RRT and suggested for daptomycin, fluoroquinolones, and tigecycline in critically ill patients on RRT.
Collapse
Affiliation(s)
- Elodie Matusik
- Pôle Pharmacie & Pôle Urgences-Réanimation-Anesthésie, Centre Hospitalier de Valenciennes, Valenciennes, France
| | - Clément Boidin
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service de Pharmacie, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon 1, EA 3738 CICLY - Centre pour l'Innovation en Cancérologie de Lyon, Oullins
| | - Arnaud Friggeri
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'Anesthésie, Médecine Intensive et Réanimation, Pierre-Bénite
- Univ Lyon, Université Claude Bernard Lyon, Faculté de Médecine Lyon Sud-Charles Mérieux, Oullins
- UMR CNRS 5308, Inserm U1111, Centre International de Recherche en Infectiologie, Laboratoire des Pathogènes Émergents
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Laurent Bitker
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Médecine Intensive Réanimation, Lyon
- Université de Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR CNRS 5220, Inserm U1206, Villeurbanne, France
| | - Jason A Roberts
- Faculty of Medicine the University of Queensland, University of Queensland Centre for Clinical Research
- Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes
| | - Sylvain Goutelle
- Hospices Civils de Lyon, Groupement Hospitalier Nord, Service de Pharmacie
- Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon ; and
- Univ Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie Évolutive Villeurbanne, France
| |
Collapse
|
4
|
Duceppe MA, Kanji S, Do AT, Ruo N, Cavayas YA, Albert M, Robert-Halabi M, Zavalkoff S, Dupont P, Samoukovic G, Williamson DR. Pharmacokinetics of Commonly Used Antimicrobials in Critically Ill Adults During Extracorporeal Membrane Oxygenation: A Systematic Review. Drugs 2021; 81:1307-1329. [PMID: 34224115 DOI: 10.1007/s40265-021-01557-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adequate dosing of antimicrobials is critical to properly treat infections and limit development of resistance and adverse effects. Limited guidance exists for antimicrobial dosing adjustments in patients requiring extracorporporeal membrane oxygenation (ECMO) therapy. A systematic review was conducted to delineate the pharmacokinetics (PK) and pharmacodynamics (PD) of antimicrobials in critically ill adult patients requiring ECMO. METHODS Medline, EMBASE, Global Health, and All EBM Reviews databases were searched. Grey literature was examined. All studies reporting PK/PD parameters of antimicrobials in critically ill adults treated with ECMO were included, except for case reports and congress abstracts. Ex vivo studies were included. Two independent reviewers applied the inclusion and exclusion criteria. Reviewers were then paired to independently abstract data and evaluate methodological quality of studies using the ROBINS-I tool and the compliance with ClinPK guidelines. Patients' and studies' characteristics, key PK/PD findings, details of ECMO circuits and co-treatments were summarized qualitatively. Dosing recommendations were formulated based on data from controlled studies. RESULTS Thirty-two clinical studies were included; most were observational and uncontrolled. Fourteen ex vivo studies were analysed. Information on patient characteristics and co-treatments was often missing. The effect of ECMO on PK/PD parameters of antimicrobials varied depending on the studied drugs. Few dosing recommendations could be formulated given the lack of good quality data. CONCLUSION Limited data exist on the PK/PD of antimicrobials during ECMO therapy. Rigorously designed and well powered populational PK studies are required to establish empiric dosing guidelines for antimicrobials in patients requiring ECMO support. PROSPERO REGISTRATION NUMBER CRD42018099992 (Registered: July 24th 2018).
Collapse
Affiliation(s)
- Marc-Alexandre Duceppe
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada.
| | - Salmaan Kanji
- Department of Pharmacy, The Ottawa Hospital, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Faculté de Pharmacie, Université de Montréal, Montreal, Canada
| | - Anh Thu Do
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Ni Ruo
- Department of Pharmacy, McGill University Health Centre, 1001 Boul. Décarie, Local C-RC 6004, Montreal, QC, H4A 3J1, Canada
| | - Yiorgos Alexandros Cavayas
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Martin Albert
- Department of Medicine, Division of Critical Care, Hôpital du Sacré-Coeur de Montréal Research Centre, Montreal, Canada.,Department of Surgery, Division of Critical Care, Montreal Heart Institute, Montreal, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montreal, Canada
| | - Maxime Robert-Halabi
- Department of Medicine, Division of Cardiology, Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Samara Zavalkoff
- Department of Pediatrics, Division of Pediatric Critical Care, McGill University Health Centre, Montreal, Canada.,Faculty of Medicine, McGill University, Montreal, Canada
| | - Patrice Dupont
- Bibliothèque de la santé, Université de Montréal, Montreal, Canada
| | - Gordan Samoukovic
- Faculty of Medicine, McGill University, Montreal, Canada.,Department of Surgery, Division of Critical Care, McGill University Health Centre, Montreal, Canada
| | - David R Williamson
- Faculté de Pharmacie, Université de Montréal, Montreal, Canada.,Department of Pharmacy, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| |
Collapse
|
5
|
Peng L, Gao Y, Zhang G, Tian X, Xu H, Yu Q, Cheng J, Li Y, Li Q, Chen Y, Zhao W, Luo Z. Effects of continuous venovenous hemofiltration on vancomycin trough concentrations in critically ill children. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:224. [PMID: 33708851 PMCID: PMC7940948 DOI: 10.21037/atm-20-4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Vancomycin trough concentrations are associated with clinical outcomes and drug adverse effects. This study investigates the effects of continuous venovenous hemofiltration (CVVH) on vancomycin trough concentrations in critically ill children with a vancomycin dosage of 40–60 mg/kg/day. Methods Children with steady-state vancomycin trough concentrations admitted to the pediatric intensive care unit (PICU) between January 2016 and December 2019 were retrospectively enrolled. Patients were divided into CVVH and non-CVVH groups according to treatment differences and renal function. Vancomycin trough concentrations were then compared between the groups, and risk factors for supratherapeutic trough concentrations (>20 mg/L) were analyzed with logistic regression. Results Of the 119 patients included, 35 were enrolled in the CVVH group and 84 in the non-CVVH group. Median vancomycin trough concentrations were significantly higher in the CVVH group than those in the non-CVVH group [14.9 (IQR =9.6–19.6) vs. 9.3 (IQR =7.0–13.4), P<0.001] and the proportion of therapeutic trough concentrations (10–20 mg/L) was similar between CVVH and non-CVVH groups (54.3% vs. 39.3%, P=0.133). However, CVVH therapy patients had a significantly higher proportion of supratherapeutic trough concentrations (20.0% vs. 1.2%, P=0.001) compared to the non-CVVH group. Multivariate analysis demonstrated that the Pediatric Risk of Mortality (PRISM) III score ≥28 (OR =13.7; 95% CI, 1.4–137.0; P=0.026] was an independent risk factor for supratherapeutic trough concentrations in critically ill patients. Conclusions CVVH therapy affects vancomycin trough concentrations and is associated with supratherapeutic concentrations with a 40–60 mg/kg/day vancomycin dosage. PRISM III scores ≥28 may serve as an independent risk factor for supratherapeutic trough concentrations in children receiving CVVH therapy.
Collapse
Affiliation(s)
- Lengyue Peng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yawen Gao
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guangli Zhang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaoyin Tian
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huiting Xu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinghong Yu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Cheng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yuanyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yingfu Chen
- Department of Pediatric Intensive Care Unit Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
6
|
Prospective Cohort Study of Population Pharmacokinetics and Pharmacodynamic Target Attainment of Vancomycin in Adults on Extracorporeal Membrane Oxygenation. Antimicrob Agents Chemother 2021; 65:AAC.02408-20. [PMID: 33257444 DOI: 10.1128/aac.02408-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop a population pharmacokinetics (PK) model for vancomycin and to evaluate its pharmacodynamic target attainment in adults on extracorporeal membrane oxygenation (ECMO). After a single 1,000-mg dose of vancomycin, samples were collected 9 times per patient prospectively. A population PK model was developed using a nonlinear mixed-effect model. The probability of target attainment (PTA) of vancomycin was evaluated for various dosing strategies using Monte Carlo simulation. The ratio of the area under the vancomycin concentration-time curve at steady state over 24 h to the MIC (AUC/MIC ratio) was investigated by applying the vancomycin breakpoint distribution of MICs for methicillin-resistant Staphylococcus aureus A total of 22 adult patients with 194 concentration measurements were included. The population PK was best described by a three-compartment model with a proportional residual error model. Vancomycin clearance and steady-state volume of distribution were 4.01 liters/h (0.0542 liters/h/kg) and 29.6 liters (0.400 liters/kg), respectively. If the treatment target AUC/MIC value was only ≥400, a total daily dose of 3 to 4 g would be optimal (PTA of ≥90%) for patients with normal renal function (estimated glomerular filtration rate [eGFR] = 60 to 120 ml/min/1.73 m2) when the MIC was presumed to be 1 mg/liter. However, AUC/MIC values of 400 to 600 were difficult to attain with any dosing strategy regardless of MIC and eGFR. Thus, it is hard to achieve efficacy and safety targets in patients on ECMO using the population dosing approach with Monte Carlo simulations, and therapeutic drug monitoring should be implemented in these patients.
Collapse
|
7
|
Wu C, Lin F, Lin S, Ho Y, Huang C, Shen L, Wu FL. Clinical pharmacy service and international collaboration: Model and experience from a medical center in Taiwan. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2020. [DOI: 10.1002/jac5.1283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chien‐Chih Wu
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Fang‐Ju Lin
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Clinical Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Shu‐Wen Lin
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Clinical Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Yunn‐Fang Ho
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Clinical Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Chih‐Fen Huang
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Li‐Jiuan Shen
- Department of Pharmacy National Taiwan University Hospital Taipei Taiwan
- Graduate Institute of Clinical Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
| | - Fe‐Lin Lin Wu
- Graduate Institute of Clinical Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- School of Pharmacy College of Medicine, National Taiwan University Taipei Taiwan
- Department of Pharmacy Cancer Center, College of Medicine, National Taiwan University Taipei Taiwan
| |
Collapse
|
8
|
Antibiotic dosing during extracorporeal membrane oxygenation: does the system matter? Curr Opin Anaesthesiol 2020; 33:71-82. [PMID: 31764007 DOI: 10.1097/aco.0000000000000810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW The aims of this review are to discuss the impact of extracorporeal membrane oxygenation (ECMO) on antibiotic pharmacokinetics and how this phenomenon may influence antibiotic dosing requirements in critically ill adult ECMO patients. RECENT FINDINGS The body of literature describing antibiotic pharmacokinetic and dosing requirements during ECMO support in critically adult patients is currently scarce. However, significant development has recently been made in this research area and more clinical pharmacokinetic data have emerged to inform antibiotic dosing in these patients. Essentially, these clinical data highlight several important points that clinicians need to consider when dosing antibiotics in critically ill adult patients receiving ECMO: physicochemical properties of antibiotics can influence the degree of drug loss/sequestration in the ECMO circuit; earlier pharmacokinetic data, which were largely derived from the neonatal and paediatric population, are certainly useful but cannot be extrapolated to the critically ill adult population; modern ECMO circuitry has minimal adsorption and impact on the pharmacokinetics of most antibiotics; and pharmacokinetic changes in ECMO patients are more reflective of critical illness rather than the ECMO therapy itself. SUMMARY An advanced understanding of the pharmacokinetic alterations in critically ill patients receiving ECMO is essential to provide optimal antibiotic dosing in these complex patients pending robust dosing guidelines. Antibiotic dosing in this patient population should generally align with the recommended dosing strategies for critically ill patients not on ECMO support. Performing therapeutic drug monitoring (TDM) to guide antibiotic dosing in this patient population appears useful.
Collapse
|