1
|
Luque S, Mendoza-Palomar N, Aguilera-Alonso D, Garrido B, Miarons M, Piqueras AI, Tévar E, Velasco-Arnaiz E, Fernàndez-Polo A. Spanish Society of Hospital Pharmacy and the Spanish Society of Pediatric Infectious Diseases (SEFH-SEIP) National Consensus Guidelines for therapeutic drug monitoring of antibiotic and antifungal drugs in pediatric and newborn patients. FARMACIA HOSPITALARIA 2024; 48:234-245. [PMID: 39271285 DOI: 10.1016/j.farma.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic monitoring of antibiotics and antifungals based on pharmacokinetic and pharmacodynamic parameters, is a strategy increasingly used for the optimization of therapy to improve efficacy, reduce the occurrence of toxicities, and prevent the selection of antimicrobial resistance, particularly in vulnerable patients including neonates and the critical or immunocompromised host. In neonates and children, infections account for a high percentage of hospital admissions and anti-infectives are the most used drugs. However, pediatric pharmacokinetic and pharmacodynamic studies and the evidence regarding the efficacy and safety of some newly marketed antibiotics and antifungals -usually used off-label in pediatrics- to determine the optimal drug dosage regimens are limited. It is widely known that this population presents important differences in the pharmacokinetic parameters (especially in drug clearance and volume of distribution) in comparison with adults that may alter antimicrobial exposure and, therefore, compromise treatment success. In addition, pediatric patients are more susceptible to potential adverse drug effects and they need closer monitoring. The aim of this document, developed jointly between the Spanish Society of Hospital Pharmacy (SEFH) and the Spanish Society of Pediatric Infectious Diseases (SEIP), is to describe the available evidence on the indications for therapeutic drug monitoring of antibiotics and antifungals in newborn and pediatric patients and to provide practical recommendations for therapeutic drug monitoring in routine clinical practice to optimize pharmacokinetic and pharmacodynamic parameters, efficacy and safety of antibiotics and antifungals in the pediatric population.
Collapse
Affiliation(s)
- Sonia Luque
- Grupo de Trabajo de Atención Farmacéutica en Enfermedades Infecciosas, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital del Mar, Barcelona, España; Grupo de Investigación en Patología Infecciosa y Antimicrobianos (IPAR), Instituto de Investigaciones Médicas Hospital Del Mar (IMIM), Barcelona, España
| | - Natalia Mendoza-Palomar
- Grupo de Trabajo de Infección Fúngica Invasiva, Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad de Patología Infecciosa e Inmunodeficiencias de Pediatría, Hospital Universitari Vall d'Hebron, Barcelona, España; Grupo de Investigación Infección e Inmunidad en el Paciente Pediátrico, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Barcelona, España.
| | - David Aguilera-Alonso
- Grupo de Trabajo de Infecciones Bacterianas, Sociedad Española de Infectología Pediátrica (SEIP), España; Sección Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón, Madrid, España; Área de Enfermedades Infecciosas Pediátricas, Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Beatriz Garrido
- Grupo de Trabajo de Pediatría, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| | - Marta Miarons
- Grupo de Trabajo de Pediatría, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Consorci Hospitalari de Vic, Barcelona, España
| | - Ana Isabel Piqueras
- Grupo de trabajo de Infecciones Relacionadas con la Asistencia Sanitaria, Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad Infectología Pediátrica, Hospital Universitario y Politécnico de La Fe, Valencia, España
| | - Enrique Tévar
- Grupo de Trabajo de Farmacocinética y Farmacogenética, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Eneritz Velasco-Arnaiz
- Grupo de Trabajo de Programas de Optimización del Uso de Antimicrobianos (PROA), Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad de Infectología Pediátrica, Hospital Sant Joan de Déu, Barcelona, España
| | - Aurora Fernàndez-Polo
- Grupo de Trabajo de Atención Farmacéutica en Enfermedades Infecciosas, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Universitari Vall d'Hebron, Barcelona, España; Grupo de Investigación Infección e Inmunidad en el Paciente Pediátrico, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Barcelona, España
| |
Collapse
|
2
|
Luque S, Mendoza-Palomar N, Aguilera-Alonso D, Garrido B, Miarons M, Piqueras AI, Tévar E, Velasco-Arnaiz E, Fernàndez-Polo A. [Translated article] Therapeutic Drug Monitoring of antibiotic and antifungical drugs in paediatric and newborn patients. Consensus Guidelines of the Spanish Society of Hospital Pharmacy (SEFH) and the Spanish Society of Paediatric Infectious Diseases (SEIP). FARMACIA HOSPITALARIA 2024; 48:T234-T245. [PMID: 39271287 DOI: 10.1016/j.farma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/08/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic monitoring of antibiotics and antifungals based on pharmacokinetic and pharmacodynamic (PK/PD) parameters is a strategy increasingly used for the optimization of therapy to improve efficacy, reduce the occurrence of toxicities, and prevent the selection of antimicrobial resistance, particularly in vulnerable patients including neonates and the critical or immunocompromised paediatric host. In neonates and children, infections account for a high percentage of hospital admissions, and anti-infectives are the most used drugs. However, paediatric PK/PD studies and the evidence regarding the efficacy and safety of some newly marketed antibiotics and antifungals-usually used off-label in paediatrics-to determine the optimal drug dosage regimens are limited. It is widely known that this population presents important differences in the PK parameters (especially in drug clearance and volume of distribution) in comparison with adults that may alter antimicrobial exposure and, therefore, compromise treatment success. In addition, paediatric patients are more susceptible to potential adverse drug effects and they need closer monitoring. The aim of this document, developed jointly by the Spanish Society of Hospital Pharmacy and the Spanish Society of Paediatric Infectious Diseases, is to describe the available evidence on the indications for therapeutic drug monitoring (TDM) of antibiotics and antifungals in newborn and paediatric patients, and to provide practical recommendations for TDM in routine clinical practice to optimise their dosing, efficacy and safety. Of antibiotics and antifungals in the paediatric population.
Collapse
Affiliation(s)
- Sonia Luque
- Grupo de trabajo de Atención Farmacéutica en Enfermedades Infecciosas de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital del Mar, Pg. Marítim de la Barceloneta, 25, 29, 08003 Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - Natalia Mendoza-Palomar
- Grupo de trabajo de Infección Fúngica Invasiva de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad de Patología Infecciosa e Inmunodeficiencias de Pediatría, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Grupo de investigación "Infección e inmunidad en el paciente pediátrico", Vall d'Hebron Institut de Recerca, Edifici Collserola Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
| | - David Aguilera-Alonso
- Grupo de trabajo de Infecciones Bacterianas de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Sección Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain; Área de Enfermedades Infecciosas Pediátricas. Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Beatriz Garrido
- Grupo de trabajo de Pediatría de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, 30120 El Palmar, Murcia, Spain
| | - Marta Miarons
- Grupo de trabajo de Pediatría de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Consorci Hospitalari de Vic, Rda Francesc Camprodon, 4, 08500 Vic, Barcelona, Spain
| | - Ana Isabel Piqueras
- Grupo de trabajo de Infecciones Relacionadas con la Asistencia Sanitaria de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad Infectología Pediátrica, Hospital Universitario y Politécnico de La Fe, Avinguda de Fernando Abril Martorell, 106, 46026 València, Spain.
| | - Enrique Tévar
- Grupo de trabajo de Farmacocinética y Farmacogenética de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
| | - Eneritz Velasco-Arnaiz
- Grupo de trabajo de Programas de Optimización del uso de Antimicrobianos (PROA) de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad de infectología pediátrica, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain.
| | - Aurora Fernàndez-Polo
- Grupo de trabajo de Atención Farmacéutica en Enfermedades Infecciosas de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Grupo de investigación "Infección e inmunidad en el paciente pediátrico", Vall d'Hebron Institut de Recerca, Edifici Collserola Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
| |
Collapse
|
3
|
Li X, Song Z, Yi Z, Qin J, Jiang D, Wang Z, Li H, Zhao R. Therapeutic drug monitoring guidelines in oncology: what do we know and how to move forward? Insights from a systematic review. Ther Adv Med Oncol 2024; 16:17588359241250130. [PMID: 38812991 PMCID: PMC11135096 DOI: 10.1177/17588359241250130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024] Open
Abstract
Background Compared with anti-infective drugs, immunosuppressants and other fields, the application of therapeutic drug monitoring (TDM) in oncology is somewhat limited. Objective We aimed to provide a comprehensive understanding of TDM guidelines for antineoplastic drugs and to promote the development of individualized drug therapy in oncology. Design This study type is a systematic review. Data sources and methods This study was performed and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 statement. Databases including PubMed, Embase, the official websites of TDM-related associations and Chinese databases were comprehensively searched up to March 2023. Two investigators independently screened the literature and extracted data. The methodological and reporting quality was evaluated using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) and the Reporting Items for Practice Guidelines in Healthcare (RIGHT), respectively. Recommendations and quality evaluation results were presented by visual plots. This study was registered in PROSPERO (No. CRD42022325661). Results A total of eight studies were included, with publication years ranging from 2014 to 2022. From the perspective of guideline development, two guidelines were developed using evidence-based methods. Among the included guidelines, four guidelines were for cytotoxic antineoplastic drugs, three for small molecule kinase inhibitors, and one for antineoplastic biosimilars. Currently available guidelines and clinical practice provided recommendations of individualized medication in oncology based on TDM, as well as influencing factors. With regard to methodological quality based on AGREE II, the average overall quality score was 55.21%. As for the reporting quality by RIGHT evaluation, the average reporting rate was 53.57%. Conclusion From the perspective of current guidelines, TDM in oncology is now being expanded from cytotoxic antineoplastic drugs to newer targeted treatments. Whereas, the types of antineoplastic drugs involved are still small, and there is still room for quality improvement. Furthermore, the reflected gaps warrant future studies into the exposure-response relationships and population pharmacokinetics models.
Collapse
Affiliation(s)
- Xinya Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zaiwei Song
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Zhanmiao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Jiguang Qin
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhitong Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Huibo Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| |
Collapse
|
4
|
Alrahahleh D, Thoma Y, Van Daele R, Nguyen T, Halena S, Luig M, Stocker S, Kim HY, Alffenaar JW. Bayesian Vancomycin Model Selection for Therapeutic Drug Monitoring in Neonates. Clin Pharmacokinet 2024; 63:367-380. [PMID: 38416322 PMCID: PMC10954945 DOI: 10.1007/s40262-024-01353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Pharmacokinetic models can inform drug dosing of vancomycin in neonates to optimize therapy. However, the model selected needs to describe the intended population to provide appropriate dose recommendations. Our study aims to identify the population pharmacokinetic (PopPK) model(s) with the best performance to predict vancomycin exposure in neonates in our hospital. METHODS Relevant published PopPK models for vancomycin in neonates were selected based on demographics and vancomycin dosing strategy. The predictive performance of the models was evaluated in Tucuxi using a local cohort of 69 neonates. Mean absolute error (MAE), relative bias (rBias) and relative root mean square error (rRMSE) were used to quantify the accuracy and precision of the predictive performance of each model for three different approaches: a priori, a posteriori, and Bayesian forecasting for the next course of therapy based on the previous course predictions. A PopPK model was considered clinically acceptable if rBias was between ± 20 and 95% confidence intervals included zero. RESULTS A total of 25 PopPK models were identified and nine were considered suitable for further evaluation. The model of De Cock et al. 2014 was the only clinically acceptable model based on a priori [MAE 0.35 mg/L, rBias 0.8 % (95% confidence interval (CI) - 7.5, 9.1%), and rRMSE 8.9%], a posteriori [MAE 0.037 mg/L, rBias - 0.23% (95% CI - 1.3, 0.88%), and rRMSE 6.02%] and Bayesian forecasting for the next courses [MAE 0.89 mg/L, rBias 5.45% (95% CI - 8.2, 19.1%), and rRMSE 38.3%) approaches. CONCLUSIONS The De Cock model was selected based on a comprehensive approach of model selection to individualize vancomycin dosing in our neonates.
Collapse
Affiliation(s)
- Dua'a Alrahahleh
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Pharmacy Building (A15), Camperdown, NSW, 2006, Australia
- Westmead Hospital, Westmead, NSW, Australia
- The University Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Westmead, NSW, Australia
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1400, Yverdon-les-Bains, Switzerland
| | - Ruth Van Daele
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
- Pharmacy Department, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Thi Nguyen
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Pharmacy Building (A15), Camperdown, NSW, 2006, Australia
- Westmead Hospital, Westmead, NSW, Australia
- The University Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Westmead, NSW, Australia
| | - Stephanie Halena
- Department of Pharmacy, Westmead Hospital, NSW, Westmead, Australia
| | - Melissa Luig
- Department of Neonatology, Westmead Hospital, Westmead, NSW, Australia
| | - Sophie Stocker
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Pharmacy Building (A15), Camperdown, NSW, 2006, Australia
- Westmead Hospital, Westmead, NSW, Australia
- The University Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Westmead, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital Sydney, Sydney, Australia
| | - Hannah Yejin Kim
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Pharmacy Building (A15), Camperdown, NSW, 2006, Australia
- The University Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Westmead, NSW, Australia
- Department of Pharmacy, Westmead Hospital, NSW, Westmead, Australia
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Pharmacy Building (A15), Camperdown, NSW, 2006, Australia.
- Westmead Hospital, Westmead, NSW, Australia.
- The University Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
5
|
Yi ZM, Li X, Wang Z, Qin J, Jiang D, Tian P, Yang P, Zhao R. Status and Quality of Guidelines for Therapeutic Drug Monitoring Based on AGREE II Instrument. Clin Pharmacokinet 2023; 62:1201-1217. [PMID: 37490190 DOI: 10.1007/s40262-023-01283-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND With the progress of therapeutic drug monitoring (TDM) technology and the development of evidence-based medicine, many guidelines were developed and implemented in recent decades. OBJECTIVE The aim was to evaluate the current status of TDM guidelines and provide suggestions for their development and updates based on Appraisal of Guidelines for Research and Evaluation (AGREE) II. METHODS The TDM guidelines were systematically searched for among databases including PubMed, Embase, China National Knowledge Infrastructure, Wanfang Data, and the Chinese biomedical literature service system and the official websites of TDM-related associations. The search period was from inception to 6 April 2023. Four researchers independently screened the literature and extracted data. Any disagreement was discussed and reconciled by another researcher. The quality of guidelines was assessed using the AGREE II instrument. RESULTS A total of 92 guidelines were included, including 57 technical guidelines, three management guidelines, and 32 comprehensive guidelines. The number of TDM guidelines has gradually increased since 1979. The United States published the most guidelines (20 guidelines), followed by China (15 guidelines) and the United Kingdom (ten guidelines), and 23 guidelines were developed by international organizations. Most guidelines are aimed at adult patients only, while 28 guidelines include special populations. With respect to formulation methods, there are 23 evidence-based guidelines. As for quality evaluation results based on AGREE II, comprehensive guidelines scored higher (58.16%) than technical guidelines (51.36%) and administrative guidelines (50.00%). CONCLUSION The number of TDM guidelines, especially technical and comprehensive ones, has significantly increased in recent years. Most guidelines are confronted with the problems of unclear methodology and low quality of evidence according to AGREE II. More evidence-based research on TDM and high-quality guideline development is recommended to promote individualized therapy.
Collapse
Affiliation(s)
- Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Xinya Li
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhitong Wang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Jiguang Qin
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Panhui Tian
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.
| |
Collapse
|
6
|
Chen A, Gupta A, Do DH, Nazer LH. Bayesian method application: Integrating mathematical modeling into clinical pharmacy through vancomycin therapeutic monitoring. Pharmacol Res Perspect 2022; 10:e01026. [PMID: 36398492 PMCID: PMC9672880 DOI: 10.1002/prp2.1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022] Open
Abstract
The most recent consensus guidelines for dosing and monitoring vancomycin recommended the use of area-under-the-curve with Bayesian estimation for therapeutic monitoring. As this is a modern concept in the practice of clinical pharmacy, the main objective of this review is to introduce the fundamentals of Bayesian estimation and its mathematical application as it relates to vancomycin therapeutic drug monitoring. In addition, we aim to identify pharmacokinetic (PK) software programs that incorporate Bayesian estimation for vancomycin dosing and to describe the PK models utilized in those software programs for the adult population. Twelve software programs that utilize Bayesian estimation were identified, which included: Adult and Pediatric Kinetics, Best Dose, ClinCalc, DoseMeRx, ID-ODS, InsightRx, MwPharm++, NextDose, PrecisePK, TDMx, Tucuxi, and VancoCalc. The software programs varied in the population PK models used as the Bayesian a priori. With the presence of various vancomycin Bayesian software programs, it is important to choose those that utilize PK models reflective of the specific patient population.
Collapse
Affiliation(s)
- Ashley Chen
- University of CaliforniaSan DiegoCaliforniaUSA
| | - Anjum Gupta
- University of CaliforniaSan DiegoCaliforniaUSA,PreciseRx IncSan DiegoCaliforniaUSA
| | - Dylan Huy Do
- University of CaliforniaSan DiegoCaliforniaUSA,Canyon Crest AcademySan DiegoCaliforniaUSA
| | | |
Collapse
|
7
|
Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022; 14:pharmaceutics14030489. [PMID: 35335866 PMCID: PMC8955715 DOI: 10.3390/pharmaceutics14030489] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/08/2023] Open
Abstract
Background: To promote model-informed precision dosing (MIPD) for vancomycin (VCM), we developed statements for therapeutic drug monitoring (TDM). Methods: Ten clinical questions were selected. The committee conducted a systematic review and meta-analysis as well as clinical studies to establish recommendations for area under the concentration-time curve (AUC)-guided dosing. Results: AUC-guided dosing tended to more strongly decrease the risk of acute kidney injury (AKI) than trough-guided dosing, and a lower risk of treatment failure was demonstrated for higher AUC/minimum inhibitory concentration (MIC) ratios (cut-off of 400). Higher AUCs (cut-off of 600 μg·h/mL) significantly increased the risk of AKI. Although Bayesian estimation with two-point measurement was recommended, the trough concentration alone may be used in patients with mild infections in whom VCM was administered with q12h. To increase the concentration on days 1–2, the routine use of a loading dose is required. TDM on day 2 before steady state is reached should be considered to optimize the dose in patients with serious infections and a high risk of AKI. Conclusions: These VCM TDM guidelines provide recommendations based on MIPD to increase treatment response while preventing adverse effects.
Collapse
|
8
|
Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics (Basel) 2021; 10:antibiotics10101182. [PMID: 34680763 PMCID: PMC8532953 DOI: 10.3390/antibiotics10101182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022] Open
Abstract
Children show important developmental and maturational changes, which may contribute greatly to pharmacokinetic (PK) variability observed in pediatric patients. These PK alterations are further enhanced by disease-related, non-maturational factors. Specific to the intensive care setting, such factors include critical illness, inflammatory status, augmented renal clearance (ARC), as well as therapeutic interventions (e.g., extracorporeal organ support systems or whole-body hypothermia [WBH]). This narrative review illustrates the relevance of both maturational and non-maturational changes in absorption, distribution, metabolism, and excretion (ADME) applied to antibiotics. It hereby provides a focused assessment of the available literature on the impact of critical illness—in general, and in specific subpopulations (ARC, extracorporeal organ support systems, WBH)—on PK and potential underexposure in children and neonates. Overall, literature discussing antibiotic PK alterations in pediatric intensive care is scarce. Most studies describe antibiotics commonly monitored in clinical practice such as vancomycin and aminoglycosides. Because of the large PK variability, therapeutic drug monitoring, further extended to other antibiotics, and integration of model-informed precision dosing in clinical practice are suggested to optimise antibiotic dose and exposure in each newborn, infant, or child during intensive care.
Collapse
|