1
|
Claus BOM, De Smedt D, De Cock PA. Therapeutic drug monitoring versus Bayesian AUC-based dosing for vancomycin in routine practice: a cost-benefit analysis. J Antimicrob Chemother 2025:dkaf011. [PMID: 39869440 DOI: 10.1093/jac/dkaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/07/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND AUC-based dosing with validated Bayesian software is recommended as a good approach to guide bedside vancomycin dosing. OBJECTIVES To compare treatment and vancomycin-associated acute kidney injury (AKI) costs between Bayesian AUC-based dosing and conventional therapeutic drug monitoring (TDM) using steady-state plasma concentrations of vancomycin administered as continuous infusion in hospitalized non-critically ill patients with severe Gram-positive infection. METHODS A cost-benefit analysis presented as a return on investment (ROI) analysis from a hospital perspective was conducted using a decision tree model (TDM versus AUC-based dosing) to simulate treatment cost (personnel, serum sampling and drug cost), vancomycin-associated AKI risk and cost up to 14 days. ROI was calculated against AUC-based software cost. One-way and probabilistic sensitivity analyses (respectively OWSA and PSA) were performed to check for robustness. RESULTS In base case, an overall cost per patient of €621.0 with TDM and €543.6 with AUC-based dosing resulted in a treatment saving of €77.4 per patient when applying AUC-based dosing. This saving against the software cost (€26.9/patient) generated an ROI per patient of €1.9 per invested € in software [€1.9 (95% CI 1.6-2.2) in PSA]. Enrolling 900 AUC-based dosed patients annually translated to a net saving of €45 469. Software break-even was reached after 313 patients. In OWSA, a higher AKI risk with TDM strongly contributed to a positive ROI. CONCLUSIONS AUC-based dosing appeared a cost-saving strategy compared with conventional TDM when applying base-case settings of vancomycin-associated AKI risk, treatment and AKI costs.
Collapse
Affiliation(s)
- Barbara O M Claus
- Pharmacy Department, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Pharmaceutical Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Delphine De Smedt
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Pieter A De Cock
- Pharmacy Department, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- Department of Pediatric Intensive Care, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Dinçel S, Demirpolat E. Evaluation of the appropriateness of vancomycin therapeutic drug monitoring in the intensive care unit with a clinical pharmacy approach, a cross-sectional study. Eur J Hosp Pharm 2024:ejhpharm-2023-004073. [PMID: 38834285 DOI: 10.1136/ejhpharm-2023-004073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVES Vancomycin, a glycopeptide antibiotic has antibacterial activity against Gram-positive bacteria and is frequently used in the intensive care unit (ICU). Inappropriate therapeutic drug monitoring (TDM) of vancomycin is a common problem encountered in hospital daily practice. The aim of this study was to evaluate the appropriateness of vancomycin trough-guided TDM in patients treated in the ICU using a clinical pharmacy approach. METHODS The study was conducted retrospectively in patients over 18 years old who had at least one vancomycin trough level and who had received intravenous (IV) vancomycin for ≥3 days between 1 November 2020 and 1 April 2022. The study included 137 patients. Patient demographics and relevant vancomycin TDM data were collected from medical records. The appropriateness of TDM was evaluated according to the criteria established based on the monitoring recommendations specified in consensus guidelines for therapeutic drug monitoring of vancomycin published by the American Society of Health-System Pharmacists (ASHP) in 2009 and 2020. RESULTS Of a total of 238 vancomycin trough levels measured in patients, 32.4% were collected at an inappropriate time. When patients were evaluated in terms of TDM appropriateness according to vancomycin level ranges (<10 µg/mL, 10-20 µg/mL and >20 µg/mL), we found the appropriate TDM was significantly higher in the therapeutic range (10-20 µg/mL) (p <0.001). Of the total 238 vancomycin trough concentrations taken from patients, 77 (32.4%) were measured at an inappropriate time. This caused dose withholding, wrong adjustments and therapy failure. The total TDM appropriateness of vancomycin was significantly higher in the therapeutic range defined as 10-20 µg/mL when evaluated based on 'TDM appropriateness criteria' (p <0.001). CONCLUSION Our study shows that appropriate vancomycin TDM increases the likelihood of achieving target trough concentrations. Involvement of clinical pharmacists in TDM management may prevent the development of adverse reactions by ensuring appropriate sampling time and appropriate interpretation of vancomycin levels.
Collapse
Affiliation(s)
- Sema Dinçel
- Clinical Pharmacy Department, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Eren Demirpolat
- Clinical Pharmacy Department, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
- Pharmacology Department, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Mekdad S, Alsayed L, Alkhalaif S. Appropriate use of vancomycin in a cardiac surgical unit. J Cardiothorac Surg 2024; 19:669. [PMID: 39707437 DOI: 10.1186/s13019-024-03155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Antibiotic resistance is a rapidly growing problem. Methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are major worries, particularly in developing nations where cost-effectiveness is essential. Use of vancomycin must be restricted to prevent resistant to it. Examining the appropriateness rate of vancomycin use in light of the recommendations of the Infectious Disease Society of America (IDSA) in the cardiac surgery ward was the aim of this study. METHODOLOGY This study was a retrospective analysis of the medical records of patients who received vancomycin over the previous year, from January 2023 to December 2023. The collected patient data included demographics, indications for vancomycin use, culture and sensitivity test results, concurrent antibiotic medications, vancomycin serum levels, and diagnoses. The appropriateness of vancomycin use was classified according to the recommendations of the Infectious Diseases Society of America (IDSA). RESULTS A total of 294 patients received vancomycin. The appropriate use of vancomycin was significantly higher than its inappropriate use (p = 0.001). Approximately 41% (n = 120) of patients were administered vancomycin for treatment purposes, while the remainder received it empirically, but not as surgical prophylaxis. Appropriate use of vancomycin was observed in 89.1% (n = 262) of patients. However, there remained a notable rate of inappropriate vancomycin use (n = 32, 10.9%). The most common reason for inappropriate use was the continuation of vancomycin beyond 72 h without further evidence of a Gram-positive infection (n = 21, accounting for 65.6% of all inappropriate use). CONCLUSIONS The current study demonstrated that 89.1% of vancomycin use was appropriate, while approximately 10% was inappropriate, potentially contributing to vancomycin resistance. The majority of inappropriate use stems from frequent empirical prescribing, which requires further review and monitoring.
Collapse
Affiliation(s)
- Sanaa Mekdad
- King Fahad Medical City, Riyad, Saudi Arabia.
- Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
4
|
Telles JP, Coelho D, Migotto KC, Diegues MS, Leao ER, Reghini R, Martinez Martos N, Caruso P, França E Silva IL. Switching Vancomycin Monitoring From Trough Concentration to Area Under the Curve Estimation by Bayesian Forecasting: A Short Communication on a Cost-Benefit Study in Resource-Limited Settings. Ther Drug Monit 2024; 46:681-686. [PMID: 38967524 DOI: 10.1097/ftd.0000000000001223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND This study was conducted to evaluate the cost-benefit indicators of a vancomycin monitoring protocol based on area under the curve estimation using commercial Bayesian software. METHODS This quasi-experimental study included patients who were aged >18 years with a vancomycin prescription for >24 hours. Patients who were terminally ill or those with acute kidney injury (AKI) ≤24 hours were excluded. During the preintervention period, doses were adjusted based on the trough concentration target of 15-20 mg/L, whereas the postintervention period target was 400-500 mg × h/L for the area under the curve. The medical team was responsible for deciding to stop the antimicrobial prescription without influence from the therapeutic drug monitoring team. The main outcomes were the incidence of AKI and length of stay. Cost-benefit simulation was performed after statistical analysis. RESULTS There were 96 patients in the preintervention group and 110 in the postintervention group. The AKI rate decreased from 20% (n = 19) to 6% (n = 6; P = 0.003), whereas the number of vancomycin serum samples decreased from 5 (interquartile range: 2-7) to 2 (interquartile range: 1-3) examinations per patient ( P < 0.001). The mean length of hospital stay for patients was 26.19 days after vancomycin prescription, compared with 17.13 days for those without AKI ( P = 0.003). At our institution, the decrease in AKI rate and reduced length of stay boosted yearly savings of up to US$ 369,000 for 300 patients receiving vancomycin therapy. CONCLUSIONS Even in resource-limited settings, a commercial Bayesian forecasting-based protocol for vancomycin is important for determining cost-benefit outcomes.
Collapse
Affiliation(s)
- João Paulo Telles
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo, Brazil
| | - Diogenes Coelho
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Erica Rocha Leao
- Department of Pharmacy, AC Camargo Cancer Center, São Paulo, Brazil
| | - Rodrigo Reghini
- Department of Infectious Diseases, AC Camargo Cancer Center, São Paulo, Brazil
| | | | - Pedro Caruso
- Department of Intensive Care Medicine, AC Camargo Cancer Center, São Paulo, Brazil
| | | |
Collapse
|
5
|
Luque S, Mendoza-Palomar N, Aguilera-Alonso D, Garrido B, Miarons M, Piqueras AI, Tévar E, Velasco-Arnaiz E, Fernàndez-Polo A. Spanish Society of Hospital Pharmacy and the Spanish Society of Pediatric Infectious Diseases (SEFH-SEIP) National Consensus Guidelines for therapeutic drug monitoring of antibiotic and antifungal drugs in pediatric and newborn patients. FARMACIA HOSPITALARIA 2024; 48:234-245. [PMID: 39271285 DOI: 10.1016/j.farma.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic monitoring of antibiotics and antifungals based on pharmacokinetic and pharmacodynamic parameters, is a strategy increasingly used for the optimization of therapy to improve efficacy, reduce the occurrence of toxicities, and prevent the selection of antimicrobial resistance, particularly in vulnerable patients including neonates and the critical or immunocompromised host. In neonates and children, infections account for a high percentage of hospital admissions and anti-infectives are the most used drugs. However, pediatric pharmacokinetic and pharmacodynamic studies and the evidence regarding the efficacy and safety of some newly marketed antibiotics and antifungals -usually used off-label in pediatrics- to determine the optimal drug dosage regimens are limited. It is widely known that this population presents important differences in the pharmacokinetic parameters (especially in drug clearance and volume of distribution) in comparison with adults that may alter antimicrobial exposure and, therefore, compromise treatment success. In addition, pediatric patients are more susceptible to potential adverse drug effects and they need closer monitoring. The aim of this document, developed jointly between the Spanish Society of Hospital Pharmacy (SEFH) and the Spanish Society of Pediatric Infectious Diseases (SEIP), is to describe the available evidence on the indications for therapeutic drug monitoring of antibiotics and antifungals in newborn and pediatric patients and to provide practical recommendations for therapeutic drug monitoring in routine clinical practice to optimize pharmacokinetic and pharmacodynamic parameters, efficacy and safety of antibiotics and antifungals in the pediatric population.
Collapse
Affiliation(s)
- Sonia Luque
- Grupo de Trabajo de Atención Farmacéutica en Enfermedades Infecciosas, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital del Mar, Barcelona, España; Grupo de Investigación en Patología Infecciosa y Antimicrobianos (IPAR), Instituto de Investigaciones Médicas Hospital Del Mar (IMIM), Barcelona, España
| | - Natalia Mendoza-Palomar
- Grupo de Trabajo de Infección Fúngica Invasiva, Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad de Patología Infecciosa e Inmunodeficiencias de Pediatría, Hospital Universitari Vall d'Hebron, Barcelona, España; Grupo de Investigación Infección e Inmunidad en el Paciente Pediátrico, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Barcelona, España.
| | - David Aguilera-Alonso
- Grupo de Trabajo de Infecciones Bacterianas, Sociedad Española de Infectología Pediátrica (SEIP), España; Sección Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón, Madrid, España; Área de Enfermedades Infecciosas Pediátricas, Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Madrid, España; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, España
| | - Beatriz Garrido
- Grupo de Trabajo de Pediatría, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| | - Marta Miarons
- Grupo de Trabajo de Pediatría, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Consorci Hospitalari de Vic, Barcelona, España
| | - Ana Isabel Piqueras
- Grupo de trabajo de Infecciones Relacionadas con la Asistencia Sanitaria, Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad Infectología Pediátrica, Hospital Universitario y Politécnico de La Fe, Valencia, España
| | - Enrique Tévar
- Grupo de Trabajo de Farmacocinética y Farmacogenética, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España
| | - Eneritz Velasco-Arnaiz
- Grupo de Trabajo de Programas de Optimización del Uso de Antimicrobianos (PROA), Sociedad Española de Infectología Pediátrica (SEIP), España; Unidad de Infectología Pediátrica, Hospital Sant Joan de Déu, Barcelona, España
| | - Aurora Fernàndez-Polo
- Grupo de Trabajo de Atención Farmacéutica en Enfermedades Infecciosas, Sociedad Española de Farmacia Hospitalaria (SEFH), España; Servicio de Farmacia Hospitalaria, Hospital Universitari Vall d'Hebron, Barcelona, España; Grupo de Investigación Infección e Inmunidad en el Paciente Pediátrico, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Barcelona, España
| |
Collapse
|
6
|
Luque S, Mendoza-Palomar N, Aguilera-Alonso D, Garrido B, Miarons M, Piqueras AI, Tévar E, Velasco-Arnaiz E, Fernàndez-Polo A. [Translated article] Therapeutic Drug Monitoring of antibiotic and antifungical drugs in paediatric and newborn patients. Consensus Guidelines of the Spanish Society of Hospital Pharmacy (SEFH) and the Spanish Society of Paediatric Infectious Diseases (SEIP). FARMACIA HOSPITALARIA 2024; 48:T234-T245. [PMID: 39271287 DOI: 10.1016/j.farma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/08/2024] [Indexed: 09/15/2024] Open
Abstract
Therapeutic monitoring of antibiotics and antifungals based on pharmacokinetic and pharmacodynamic (PK/PD) parameters is a strategy increasingly used for the optimization of therapy to improve efficacy, reduce the occurrence of toxicities, and prevent the selection of antimicrobial resistance, particularly in vulnerable patients including neonates and the critical or immunocompromised paediatric host. In neonates and children, infections account for a high percentage of hospital admissions, and anti-infectives are the most used drugs. However, paediatric PK/PD studies and the evidence regarding the efficacy and safety of some newly marketed antibiotics and antifungals-usually used off-label in paediatrics-to determine the optimal drug dosage regimens are limited. It is widely known that this population presents important differences in the PK parameters (especially in drug clearance and volume of distribution) in comparison with adults that may alter antimicrobial exposure and, therefore, compromise treatment success. In addition, paediatric patients are more susceptible to potential adverse drug effects and they need closer monitoring. The aim of this document, developed jointly by the Spanish Society of Hospital Pharmacy and the Spanish Society of Paediatric Infectious Diseases, is to describe the available evidence on the indications for therapeutic drug monitoring (TDM) of antibiotics and antifungals in newborn and paediatric patients, and to provide practical recommendations for TDM in routine clinical practice to optimise their dosing, efficacy and safety. Of antibiotics and antifungals in the paediatric population.
Collapse
Affiliation(s)
- Sonia Luque
- Grupo de trabajo de Atención Farmacéutica en Enfermedades Infecciosas de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital del Mar, Pg. Marítim de la Barceloneta, 25, 29, 08003 Barcelona, Spain; Infectious Pathology and Antimicrobials Research Group (IPAR), Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - Natalia Mendoza-Palomar
- Grupo de trabajo de Infección Fúngica Invasiva de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad de Patología Infecciosa e Inmunodeficiencias de Pediatría, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Grupo de investigación "Infección e inmunidad en el paciente pediátrico", Vall d'Hebron Institut de Recerca, Edifici Collserola Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
| | - David Aguilera-Alonso
- Grupo de trabajo de Infecciones Bacterianas de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Sección Enfermedades Infecciosas Pediátricas, Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain; Área de Enfermedades Infecciosas Pediátricas. Centro de Investigación Biomédica en Red del Instituto de Salud Carlos III (CIBERINFEC), Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, C. del Dr. Esquerdo, 46, 28007 Madrid, Spain
| | - Beatriz Garrido
- Grupo de trabajo de Pediatría de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Clínico Universitario Virgen de la Arrixaca, Ctra. Madrid-Cartagena, s/n, 30120 El Palmar, Murcia, Spain
| | - Marta Miarons
- Grupo de trabajo de Pediatría de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Consorci Hospitalari de Vic, Rda Francesc Camprodon, 4, 08500 Vic, Barcelona, Spain
| | - Ana Isabel Piqueras
- Grupo de trabajo de Infecciones Relacionadas con la Asistencia Sanitaria de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad Infectología Pediátrica, Hospital Universitario y Politécnico de La Fe, Avinguda de Fernando Abril Martorell, 106, 46026 València, Spain.
| | - Enrique Tévar
- Grupo de trabajo de Farmacocinética y Farmacogenética de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitario Nuestra Señora de Candelaria, Ctra. Gral. del Rosario, 145, 38010 Santa Cruz de Tenerife, Spain
| | - Eneritz Velasco-Arnaiz
- Grupo de trabajo de Programas de Optimización del uso de Antimicrobianos (PROA) de la Sociedad Española de Infectología Pediátrica (SEIP), Madrid, Spain; Unidad de infectología pediátrica, Hospital Sant Joan de Déu, Pg. de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona, Spain.
| | - Aurora Fernàndez-Polo
- Grupo de trabajo de Atención Farmacéutica en Enfermedades Infecciosas de la Sociedad Española de Farmacia Hospitalaria (SEFH), Madrid, Spain; Servicio de Farmacia Hospitalaria, Hospital Universitari Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain; Grupo de investigación "Infección e inmunidad en el paciente pediátrico", Vall d'Hebron Institut de Recerca, Edifici Collserola Hospital Universitari Vall d'Hebron, Pg. de la Vall d'Hebron, 129, 08035 Barcelona, Spain.
| |
Collapse
|
7
|
Minichmayr IK, Dreesen E, Centanni M, Wang Z, Hoffert Y, Friberg LE, Wicha SG. Model-informed precision dosing: State of the art and future perspectives. Adv Drug Deliv Rev 2024; 215:115421. [PMID: 39159868 DOI: 10.1016/j.addr.2024.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
Model-informed precision dosing (MIPD) stands as a significant development in personalized medicine to tailor drug dosing to individual patient characteristics. MIPD moves beyond traditional therapeutic drug monitoring (TDM) by integrating mathematical predictions of dosing, and considering patient-specific factors (patient characteristics, drug measurements) as well as different sources of variability. For this purpose, rigorous model qualification is required for the application of MIPD in patients. This review delves into new methods in model selection and validation, also highlighting the role of machine learning in improving MIPD, the utilization of biosensors for real-time monitoring, as well as the potential of models integrating biomarkers for efficacy or toxicity for precision dosing. The clinical evidence of TDM and MIPD is discussed for various medical fields including infection medicine, oncology, transplant medicine, and inflammatory bowel diseases, thereby underscoring the role of pharmacokinetics/pharmacodynamics and specific biomarkers. Further research, particularly randomized clinical trials, is warranted to corroborate the value of MIPD in enhancing patient outcomes and advancing personalized medicine.
Collapse
Affiliation(s)
- I K Minichmayr
- Dept. of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - E Dreesen
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - M Centanni
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Z Wang
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Y Hoffert
- Clinical Pharmacology and Pharmacotherapy Unit, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - L E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - S G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
8
|
Cafaro A, Stella M, Mesini A, Castagnola E, Cangemi G, Mattioli F, Baiardi G. Dose optimization and target attainment of vancomycin in children. Clin Biochem 2024; 125:110728. [PMID: 38325652 DOI: 10.1016/j.clinbiochem.2024.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Vancomycin is a glycopeptide antibiotic that has been adopted in clinical practice to treat gram-positive infections for more than 70 years. Despite vancomycin's long history of therapeutic use, optimal dose adjustments and pharmacokinetic/pharmacodynamic (PK/PD) target attainment in children are still under debate. Therapeutic drug monitoring (TDM) has been widely integrated into pediatric clinical practice to maximize efficacy and safety of vancomycin treatment. Area under the curve (AUC)-guided TDM has been recently recommended instead of trough-only TDM to ensure PK/PD target attainment of AUC0-24h/minimal inhibitory concentration (MIC) > 400 to 600 and minimize acute kidney injury risk. Bayesian forecasting in pediatric patients allows estimation of population PK to accurately predict individual vancomycin concentrations over time, and consequently total vancomycin exposure. AUC-guided TDM for vancomycin, preferably with Bayesian forecasting, is therefore suggested for all pediatric age groups and special pediatric populations. In this review we aim to analyze the current literature on the pediatric use of vancomycin and summarize the current knowledge on dosing optimization for target attainment in special patient populations.
Collapse
Affiliation(s)
- Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina, Gaslini, Genova, Italy
| | - Manuela Stella
- UOC Servizio di Sperimentazioni Cliniche Pediatriche, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, Genova, Italy
| | - Alessio Mesini
- Infectious Disease Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Elio Castagnola
- Infectious Disease Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina, Gaslini, Genova, Italy.
| | - Francesca Mattioli
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, Genova, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genova, Italy
| | - Giammarco Baiardi
- Department of Internal Medicine, Pharmacology & Toxicology Unit, University of Genoa, Genova, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genova, Italy
| |
Collapse
|
9
|
Cafaro A, Barco S, Pigliasco F, Russo C, Mariani M, Mesini A, Saffioti C, Castagnola E, Cangemi G. Therapeutic drug monitoring of glycopeptide antimicrobials: An overview of liquid chromatography-tandem mass spectrometry methods. J Mass Spectrom Adv Clin Lab 2024; 31:33-39. [PMID: 38304144 PMCID: PMC10831154 DOI: 10.1016/j.jmsacl.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Therapeutic drug monitoring (TDM) is a critical clinical tool used to optimize the safety and effectiveness of drugs by measuring their concentration in biological fluids. These fluids are primarily plasma or blood. TDM, together with real-time dosage adjustment, contributes highly to the successful management of glycopeptide antimicrobial therapies. Understanding pharmacokinetic/pharmacodynamic (PK/PD) properties is vital for optimizing antimicrobial therapies, as the efficacy of these therapies depends on both the exposure of the patient to the drug (PK) and pharmacodynamic (PD) parameters such as the in vitro estimated minimum drug concentration that inhibits bacterial growth (MIC). Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is widely recognized as the gold standard for measuring small molecules, such as antibiotics. This review provides a comprehensive overview of LC-MS/MS methods available for TDM of glycopeptide antibiotics, including vancomycin, teicoplanin, dalbavancin, oritavancin, and telavancin.
Collapse
Affiliation(s)
- Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Chiara Russo
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Marcello Mariani
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Alessio Mesini
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Carolina Saffioti
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Elio Castagnola
- Pediatric Infectious Diseases Unit IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
10
|
Hovd M, Robertsen I, Woillard JB, Åsberg A. A Method for Evaluating Robustness of Limited Sampling Strategies—Exemplified by Serum Iohexol Clearance for Determination of Measured Glomerular Filtration Rate. Pharmaceutics 2023; 15:pharmaceutics15041073. [PMID: 37111559 PMCID: PMC10143161 DOI: 10.3390/pharmaceutics15041073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
In combination with Bayesian estimates based on a population pharmacokinetic model, limited sampling strategies (LSS) may reduce the number of samples required for individual pharmacokinetic parameter estimations. Such strategies reduce the burden when assessing the area under the concentration versus time curves (AUC) in therapeutic drug monitoring. However, it is not uncommon for the actual sample time to deviate from the optimal one. In this work, we evaluate the robustness of parameter estimations to such deviations in an LSS. A previously developed 4-point LSS for estimation of serum iohexol clearance (i.e., dose/AUC) was used to exemplify the effect of sample time deviations. Two parallel strategies were used: (a) shifting the exact sampling time by an empirical amount of time for each of the four individual sample points, and (b) introducing a random error across all sample points. The investigated iohexol LSS appeared robust to deviations from optimal sample times, both across individual and multiple sample points. The proportion of individuals with a relative error greater than 15% (P15) was 5.3% in the reference run with optimally timed sampling, which increased to a maximum of 8.3% following the introduction of random error in sample time across all four time points. We propose to apply the present method for the validation of LSS developed for clinical use.
Collapse
Affiliation(s)
- Markus Hovd
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; (I.R.); (A.Å.)
- Correspondence:
| | - Ida Robertsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; (I.R.); (A.Å.)
| | - Jean-Baptiste Woillard
- Inserm, Univ. Limoges, CHU Limoges, Pharmacology & Toxicology, U 1248, F-87000 Limoges, France;
| | - Anders Åsberg
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; (I.R.); (A.Å.)
- Department of Transplantation Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|