1
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Automated Interlaboratory Comparison of Therapeutic Drug Monitoring Data and Its Use for Evaluation of Published Therapeutic Reference Ranges. Pharmaceutics 2023; 15:pharmaceutics15020673. [PMID: 36839995 PMCID: PMC9964937 DOI: 10.3390/pharmaceutics15020673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Therapeutic drug monitoring is a tool for optimising the pharmacological treatment of diseases where the therapeutic effect is difficult to measure or monitor. Therapeutic reference ranges and dose-effect relation are the main requirements for this drug titration tool. Defining and updating therapeutic reference ranges are difficult, and there is no standardised method for the calculation and clinical qualification of these. The study presents a basic model for validating and selecting routine laboratory data. The programmed algorithm was applied on data sets of antidepressants and antipsychotics from three public hospitals in Denmark. Therapeutic analytical ranges were compared with the published therapeutic reference ranges by the Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) and in additional literature. For most of the drugs, the calculated therapeutic analytical ranges showed good concordance between the laboratories and to published therapeutic reference ranges. The exceptions were flupentixol, haloperidol, paroxetine, perphenazine, and venlafaxine + o-desmethyl-venlafaxine (total plasma concentration), where the range was considerably higher for the laboratory data, while the calculated range of desipramine, sertraline, ziprasidone, and zuclopenthixol was considerably lower. In most cases, we identified additional literature supporting our data, highlighting the need of a critical re-examination of current therapeutic reference ranges in Denmark. An automated approach can aid in the evaluation of current and future therapeutic reference ranges by providing additional information based on big data from multiple laboratories.
Collapse
|
3
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:ph14060514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
4
|
Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs—Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021. [DOI: 10.3390/ph14060514
expr 938544256 + 801362328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug’s pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients’ drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior—both clinically relevant in psychiatry—that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
|
5
|
Moschny N, Hefner G, Grohmann R, Eckermann G, Maier HB, Seifert J, Heck J, Francis F, Bleich S, Toto S, Meissner C. Therapeutic Drug Monitoring of Second- and Third-Generation Antipsychotic Drugs-Influence of Smoking Behavior and Inflammation on Pharmacokinetics. Pharmaceuticals (Basel) 2021; 14:514. [PMID: 34071813 PMCID: PMC8230242 DOI: 10.3390/ph14060514&set/a 947965394+957477086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Both inflammation and smoking can influence a drug's pharmacokinetic properties, i.e., its liberation, absorption, distribution, metabolism, and elimination. Depending on, e.g., pharmacogenetics, these changes may alter treatment response or cause serious adverse drug reactions and are thus of clinical relevance. Antipsychotic drugs, used in the treatment of psychosis and schizophrenia, should be closely monitored due to multiple factors (e.g., the narrow therapeutic window of certain psychotropic drugs, the chronicity of most mental illnesses, and the common occurrence of polypharmacotherapy in psychiatry). Therapeutic drug monitoring (TDM) aids with drug titration by enabling the quantification of patients' drug levels. Recommendations on the use of TDM during treatment with psychotropic drugs are presented in the Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology; however, data on antipsychotic drug levels during inflammation or after changes in smoking behavior-both clinically relevant in psychiatry-that can aid clinical decision making are sparse. The following narrative review provides an overview of relevant literature regarding TDM in psychiatry, particularly in the context of second- and third-generation antipsychotic drugs, inflammation, and smoking behavior. It aims to spread awareness regarding TDM (most pronouncedly of clozapine and olanzapine) as a tool to optimize drug safety and provide patient-tailored treatment.
Collapse
Affiliation(s)
- Nicole Moschny
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
- Correspondence: ; Tel.: +49-511-532-3656
| | - Gudrun Hefner
- Department of Psychiatry and Psychotherapy, Vitos Clinic for Forensic Psychiatry, Kloster-Eberbach-Str. 4, 65346 Eltville, Germany;
| | - Renate Grohmann
- Department of Psychiatry and Psychotherapy, Ludwig Maximilian University of Munich, Nussbaum-Str. 7, 80336 Munich, Germany;
| | - Gabriel Eckermann
- Department of Forensic Psychiatry and Psychotherapy, Hospital Kaufbeuren, Kemnater-Str. 16, 87600 Kaufbeuren, Germany;
| | - Hannah B Maier
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johanna Seifert
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Flverly Francis
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Sermin Toto
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| | - Catharina Meissner
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (H.B.M.); (J.S.); (F.F.); (S.B.); (S.T.); (C.M.)
| |
Collapse
|
6
|
Spina E, Hiemke C, de Leon J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin Drug Metab Toxicol 2016; 12:407-22. [DOI: 10.1517/17425255.2016.1154043] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Mandrioli R, Protti M, Mercolini L. Evaluation of the pharmacokinetics, safety and clinical efficacy of ziprasidone for the treatment of schizophrenia and bipolar disorder. Expert Opin Drug Metab Toxicol 2014; 11:149-74. [PMID: 25483358 DOI: 10.1517/17425255.2015.991713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Multiple strategies exist for the pharmacological treatment of schizophrenia and related disorders. In the last 20 years, several 'new' compounds have been introduced, called 'atypical antipsychotics', which have higher efficacy and better tolerability than first-generation neuroleptics. Among them, ziprasidone (ZPR) is currently finding widespread use, and it has also been shown to be active as an augmenter in bipolar disorder therapy. AREAS COVERED This review aims to provide the latest information on ZPR, an 'atypical' agent for the pharmacological therapy of schizophrenia and bipolar disorder. A literature search has been carried out with the keywords 'ziprasidone', 'schizophrenia', 'psychosis', 'bipolar', 'pharmacokinetics' and 'clinical trials'. In this process, particular attention has been paid to the drug pharmacokinetic characteristics and its safety in clinical use. EXPERT OPINION ZPR shares most advantages and disadvantages with other atypical antipsychotics. However, it can be useful for its low tendency to cause metabolic syndrome and hyperprolactinaemia, especially in patients suffering from excess weight, hyperlipidaemia, diabetes or who have suffered from hyperprolactinaemia when using other antipsychotics. However, there are serious doubts as to whether ZPR should be administered to patients suffering from arrhythmias or QTc prolongation, and even more for administration to bipolar patients undergoing polypharmacy with antidepressants.
Collapse
Affiliation(s)
- Roberto Mandrioli
- Alma Mater Studiorum - University of Bologna, Department for Life Quality Studies (QuVi) , Corso d'Augusto 237, 47921 Rimini , Italy +39 0541 434624 ; +39 0541 434608 ;
| | | | | |
Collapse
|
8
|
Abstract
Atypical antipsychotics [also known as second-generation antipsychotics (SGAs)] have become a mainstay therapeutic treatment intervention for patients with schizophrenia, bipolar disorders and other psychotic conditions. These agents are commonly used with other medications--most notably, antidepressants and antiepileptic drugs. Drug interactions can take place by various pharmacokinetic, pharmacodynamic and pharmaceutical mechanisms. The pharmacokinetic profile of each SGA, especially with phase I and phase II metabolism, can allow for potentially significant drug interactions. Pharmacodynamic interactions arise when agents have comparable receptor site activity, which can lead to additive or competitive effects without alterations in measured plasma drug concentrations. Additionally, the role of drug transporters in drug interactions continues to evolve and may effect both pharmacokinetic and pharmacodynamic interactions. Pharmaceutical interactions occur when physical incompatibilities take place between agents prior to drug absorption. Approximate therapeutic plasma concentration ranges have been suggested for a number of SGAs. Drug interactions that markedly increase or decrease the concentrations of these agents beyond their ranges can lead to adverse events or diminished clinical efficacy. Most clinically significant drug interactions with SGAs occur via the cytochrome P450 (CYP) system. Many but not all drug interactions with SGAs are identified during drug discovery and pre-clinical development by employing a series of standardized in vitro and in vivo studies with known CYP inducers and inhibitors. Later therapeutic drug monitoring programmes, clinical studies and case reports offer methods to identify additional clinically significant drug interactions. Some commonly co-administered drugs with a significant potential for drug-drug interactions with selected SGAs include some SSRIs. Antiepileptic mood stabilizers such as carbamazepine and valproate, as well as other antiepileptic drugs such as phenobarbital and phenytoin, may decrease plasma SGA concentrations. Some anti-infective agents such as protease inhibitors and fluoroquinolones are of concern as well. Two additional important factors that influence drug interactions with SGAs are dose and time dependence. Smoking is very common among psychiatric patients and can induce CYP1A2 enzymes, thereby lowering expected plasma levels of certain SGAs. It is recommended that ziprasidone and lurasidone are taken with food to promote drug absorption, otherwise their bioavailability can be reduced. Clinicians must be aware of the variety of factors that can increase the likelihood of clinically significant drug interactions with SGAs, and must carefully monitor patients to maximize treatment efficacy while minimizing adverse events.
Collapse
Affiliation(s)
- William Klugh Kennedy
- Department of Pharmacy Practice, Mercer University College of Pharmacy and Health Sciences, Atlanta, GA, 76107, USA
| | | | | |
Collapse
|
9
|
Dopamine D₂/₃ occupancy of ziprasidone across a day: a within-subject PET study. Psychopharmacology (Berl) 2013; 228:43-51. [PMID: 23417515 PMCID: PMC3679209 DOI: 10.1007/s00213-013-3012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
RATIONALE Ziprasidone is an atypical antipsychotic recommended to be administered twice daily. OBJECTIVES The purpose of this study was to investigate whether occupancy of the dopamine D2/3 receptors by ziprasidone is maintained across a day employing a within subject design. METHODS Positron emission tomography (PET) scans with [(11)C]-raclopride were performed in 12 patients with schizophrenia while treated with ziprasidone 60 mg twice daily. Each patient completed [(11)C]-raclopride PET scans at 5, 13 and 23 h after the last dose of ziprasidone. Dopamine D2/3 receptor occupancy was estimated with reference to binding potential data of 44 age- and sex-matched control subjects in the caudate, putamen and ventral striatum. RESULTS Eleven scans were available at each time point, and the mean occupancies at 5-, 13- and 23-h scans were 66, 39 and 2 % in the putamen; 62, 35 and -6 % in the caudate; and 68, 47 and 11 % in the ventral striatum, respectively. The time-course of receptor occupancy across the regions indicated an occupancy half-life of 8.3 h. The serum level of ziprasidone associated with 50 % D2/3 receptors occupancy was estimated to be 204 nmol/L (84 ng/ml). Prolactin levels were highest at 5-h post-dose and none showed hyperprolactinemia at 23-h scans. CONCLUSIONS The absence of ziprasidone striatal D2/3 receptor binding 23 h after taking 60 mg under steady-state conditions is consistent with its peripheral half-life. The results support our earlier report that ziprasidone 60 mg administered twice daily appears to be the minimal dose expected to achieve therapeutic central dopamine D2/3 receptor occupancy (i.e. 60 %). CLINICAL TRIALS REGISTRATION 24-Hour Time Course of Striatal Dopamine D2 Receptor Occupancy of Ziprasidone: A PET Study, www.clinicaltrials.gov/ct2/show/NCT00818298 , NCT00818298.
Collapse
|
10
|
Abstract
Pediatric behavioral and affective disorders often require antipsychotic therapy, in combination with psychotherapeutic interventions, for their treatment and stabilization. Although pharmacotherapy can include either typical or atypical antipsychotics, the latter are generally preferred because of their apparently lower risk of adverse effects. Recent controlled trials have demonstrated the efficacy of some of these agents (including aripiprazole, clozapine, olanzapine, paliperidone, quetiapine, risperidone, ziprasidone) in adolescent schizophrenia and children or adolescent bipolar mania, or to treat severe aggression and self-injury in the context of autism in children and adolescents. Although few studies have systematically monitored their short- and, more importantly, long-term safety, current evidence indicates that sedation, hyperprolactinemia, and metabolic abnormalities such as excess weight gain, diabetes, and related cardiovascular effects were clinically relevant adverse effects in young patients, with the individual agents differing in their propensity to induce these effects. When prescribing antipsychotics for children and adolescents, physicians should therefore be aware of the specific adverse effect profiles and patients should be closely monitored for the short- and long-term development of adverse events. In pediatric patients, the starting dose, titration plan, and maintenance dose of antipsychotics must be based on their pharmacokinetics and metabolism, as in adults. Because there are significant individual differences in drug and active metabolite(s) pharmacokinetics and metabolism, which may be further affected by a number of confounding factors (including demographic variables, phenotype and drug interactions), therapeutic drug monitoring may be a valid tool for individualizing dosage, but its interpretation should also take account of changes in pharmacodynamic sensitivity with the development during childhood and adolescence.
Collapse
Affiliation(s)
- Silvio Caccia
- Istituto di Ricerche Farmacologiche IRCCS-Mario Negri, via Giuseppe La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
11
|
Atypical antipsychotics: trends in analysis and sample preparation of various biological samples. Bioanalysis 2012; 4:961-80. [DOI: 10.4155/bio.12.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Atypical antipsychotics are increasingly popular and increasingly prescribed. In some countries, they can even be obtained over-the-counter, without a prescription, making their abuse quite easy. Although atypical antipsychotics are thought to be safer than typical antipsychotics, they still have severe side effects. Intoxications are not rare and some of them have a fatal outcome. Drug interactions involving atypical antipsychotics complicate patient management in clinical settings and the determination of the cause of death in fatalities. In view of the above, analytical strategies that can efficiently isolate atypical antipsychotics from a variety of biological samples and quantify them accurately, sensitively and reliably, are of utmost importance both for the clinical, as well as for the forensic toxicologist. In this review, we will present and discuss novel analytical strategies that have been developed from 2004 to the present day for the determination of atypical antipsychotics in various biological samples.
Collapse
|
12
|
Stip E, Zhornitsky S, Moteshafi H, Létourneau G, Stikarovska I, Potvin S, Tourjman V. Ziprasidone for Psychotic Disorders: A Meta-Analysis and Systematic Review of the Relationship Between Pharmacokinetics, Pharmacodynamics, and Clinical Profile. Clin Ther 2011; 33:1853-67. [DOI: 10.1016/j.clinthera.2011.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 11/26/2022]
|
13
|
Wessels AM, Bies RR, Pollock BG, Schneider LS, Lieberman JA, Stroup S, Li CH, Coley K, Kirshner MM, Marder SR. Population pharmacokinetic modeling of ziprasidone in patients with schizophrenia from the CATIE study. J Clin Pharmacol 2011; 51:1587-91. [PMID: 21209243 DOI: 10.1177/0091270010387604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alette M Wessels
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Citrome L. Using oral ziprasidone effectively: the food effect and dose-response. Adv Ther 2009; 26:739-48. [PMID: 19669631 DOI: 10.1007/s12325-009-0055-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Indexed: 11/25/2022]
Abstract
Ziprasidone is a newer "atypical" or "second-generation" antipsychotic. Oral ziprasidone (ziprasidone hydrochloride) has been approved by the US Food and Drug Administration (FDA) for the treatment of schizophrenia, and acute manic or mixed episodes associated with bipolar disorder (with or without psychotic features). Comparisons with other second-generation antipsychotics in meta-analyses reveal similar efficacy to that observed for quetiapine or aripiprazole, but inferior efficacy to that of olanzapine or risperidone in the treatment of schizophrenia. However, the rate of dose titration and the dose achieved may have an important bearing on ziprasidone's efficacy profile, with a target dose range of 120-160 mg/day being associated with optimal symptom control and greater persistence with treatment. In addition, enhancing ziprasidone's effectiveness requires ensuring that ziprasidone is administered with a 500 kcal meal; otherwise, absorption of oral ziprasidone is substantially reduced and cannot be compensated for by increasing the prescribed dose. Regarding tolerability, ziprasidone has important advantages in that it is not associated with clinically significant weight gain or adverse changes in cholesterol, triglycerides, or glycemic control, and patients may experience moderate improvement in these measures when switching to ziprasidone from a different antipsychotic. Ziprasidone also lacks significant persistent effects on prolactin levels, is not anticholinergic, and only infrequently causes extrapyramidal side effects or postural hypotension; however, it can be associated with somnolence. Ziprasidone may prolong the electrocardiogram (ECG) QT interval but this does not appear to pose a substantial clinical problem. Provided that an adequate dose of ziprasidone is prescribed, and administered with a 500 kcal meal, ziprasidone can be effectively used to control symptoms without the long-term liabilities of metabolic side effects.
Collapse
Affiliation(s)
- Leslie Citrome
- Department of Psychiatry, Nathan S. Kline Institute for Psychiatric Research, New York University School of Medicine, Orangeburg, NY 10962, USA.
| |
Collapse
|