1
|
Zwart TC, Guchelaar HJ, van der Boog PJM, Swen JJ, van Gelder T, de Fijter JW, Moes DJAR. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today 2021; 26:2527-2546. [PMID: 34119665 DOI: 10.1016/j.drudis.2021.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Immunosuppressive therapy is pivotal for sustained allograft and patient survival after renal transplantation. However, optimally balanced immunosuppressive therapy is challenged by between-patient and within-patient pharmacokinetic (PK) variability. This could warrant the application of personalised dosing strategies to optimise individual patient outcomes. Pharmacometrics, the science that investigates the xenobiotic-biotic interplay using computer-aided mathematical modelling, provides options to describe and quantify this PK variability and enables identification of patient characteristics affecting immunosuppressant PK and treatment outcomes. Here, we review and critically appraise the available pharmacometric model-informed dosing solutions for the typical immunosuppressants in modern renal transplantation, to guide their initial and subsequent dosing.
Collapse
Affiliation(s)
- Tom C Zwart
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Paul J M van der Boog
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands; LUMC Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands; Leiden Network for Personalised Therapeutics, Leiden, the Netherlands.
| |
Collapse
|
2
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
3
|
Parant F, Ranchin B, Gagnieu MC. The Roche Total Mycophenolic Acid® assay: An application protocol for the ABX Pentra 400 analyzer and comparison with LC-MS in children with idiopathic nephrotic syndrome. Pract Lab Med 2017; 7:19-26. [PMID: 28856214 PMCID: PMC5575364 DOI: 10.1016/j.plabm.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
Background For TDM of mycophenolate acid (MPA), the Roche Total Mycophenolic Acid® assay based on the inhibition of recombinant inosine monophosphate dehydrogenase (IMPDH) has been shown to be a simple and reliable alternative to chromatographic methods. We have adapted this assay on the ABX Pentra 400 analyzer (HORIBA). Objective To investigate the analytical performances of the Roche Total Mycophenolic Acid® assay on the ABX Pentra 400 and to compare it to an LC-MS method using samples from children with nephrotic syndrome treated with mycophenolate mofetil (MMF). Material and methods Configuration of the open-channel on the ABX Pentra 400 was based on the Roche MPA assay package insert. Precision was determined as described in the CLSI protocol EP5-A2. Comparison with the LC-MS method was performed using 356 plasma samples from 42 children with nephrotic syndrome (8 h pharmacokinetic profiles). Results The enzymatic assay demonstrated high precision. The %CV for Within Run Imprecision ranged from 5.5% at 1.2 mg/L to 1.5% at 14.1 mg/L and Total Imprecision ranged from 9.3% to 2.5%. The method comparison with plasma samples from children yielded overall a good correlation and a good agreement between both methods. The Passing Bablok regression analysis showed the following results: [Roche MPA assay]=1.058 [MPA LC-MS] −0.06; rho=0.996. Conclusion The Roche Total Mycophenolic Acid® assay is adaptable to the ABX Pentra 400 analyzer, and demonstrates accurate and precise measurement of MPA in plasma obtained from children with nephrotic syndrome. Adaptation of the Roche Total Mycophenolic Acid® assay to the Pentra 400 analyzer. Comparison with LC-MS in children with idiopathic nephrotic syndrome. Therapeutic drug monitoring of mycophenolate mofetil.
Collapse
Affiliation(s)
- François Parant
- Hospices Civils de Lyon, GHS - Centre de Biologie Sud, UM Pharmacologie - Toxicologie, Pierre Bénite F-69495, France
| | - Bruno Ranchin
- Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Service de Néphrologie et Rhumatologie Pédiatriques, Bron F-69677, France
| | - Marie-Claude Gagnieu
- Hospices Civils de Lyon, GHS - Centre de Biologie Sud, UM Pharmacologie - Toxicologie, Pierre Bénite F-69495, France
| |
Collapse
|
4
|
Rissling O, Bauer S, Shipkova M, Glander P, Mai M, Hambach P, Budde K. Simultaneous determination of mycophenolate and its metabolite mycophenolate-7-o-glucuronide with an isocratic HPLC-UV-based method in human plasma and stability evaluation. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 76:612-619. [PMID: 27676419 DOI: 10.1080/00365513.2016.1230775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Mycophenolic acid (MPA) is an immunosuppressive agent which is commonly used in a fixed dose regime in solid organ transplantation. For clinical trials and therapeutic drug monitoring measuring plasma concentrations is necessary. Also, stability issues have to be addressed. METHODS We describe an isocratic, RP-based HPLC-UV method for simultaneous determination of MPA and its major metabolite Mycophenolic acid 7-o Glucuronide (MPAG) in human plasma. Pre-analytics included protein precipitation with acetonitrile. The method was validated according to EMA/FDA guidelines. Patient lithium-heparin plasma and blood was used for evaluation of short-term (72 hours at room temperature = RT) and long-term stability (2 years at -80 °C) without acidification. RESULTS Linearity was assessed in the concentration range of 0.5-40.0 μg/mL for MPA and 5.0-350.0 μg/mL for MPAG, respectively. For MPA coefficient of variation was <7.0% (lower limit of quantification = LLOQ: 10.8%), for MPAG <9.6% (LLOQ: 10.6%). Bias ranged between -1.9 and +1.5% for MPA and for MPAG between -4.3 and -0.3%. The method showed agreement with a reference method for both analytes. MPA remained stable for 7 h (-1.6 to +8.4% change to the initial concentration) and MPAG for 24 h (-1.8 to -11.5% change) at RT in lithium heparin blood. After 2 years of storage at -80 °C MPA, MPAG concentrations and 95% CIs remained within ±15% of the initial value. CONCLUSION The presented assay is applicable for clinical studies. Blood samples were stable for 7 hours at RT and plasma for 2 years stored at -80 °C.
Collapse
Affiliation(s)
- Olesja Rissling
- a Department of Nephrology , Charité Universitätsmedizin , Berlin , Germany.,b Institute of Pharmacy, Freie Universitaet Berlin , Berlin , Germany
| | - Steffen Bauer
- c Institute of Medical Diagnostics , Berlin , Germany
| | - Maria Shipkova
- d Central Institute for Clinical Chemistry and Laboratory Medicine , Klinikum Stuttgart , Stuttgart , Germany
| | - Petra Glander
- a Department of Nephrology , Charité Universitätsmedizin , Berlin , Germany
| | - Marco Mai
- a Department of Nephrology , Charité Universitätsmedizin , Berlin , Germany
| | - Pia Hambach
- a Department of Nephrology , Charité Universitätsmedizin , Berlin , Germany
| | - Klemens Budde
- a Department of Nephrology , Charité Universitätsmedizin , Berlin , Germany
| |
Collapse
|
5
|
Kunicki PK, Pawiński T, Boczek A, Waś J, Bodnar-Broniarczyk M. A Comparison of the Immunochemical Methods, PETINIA and EMIT, With That of HPLC-UV for the Routine Monitoring of Mycophenolic Acid in Heart Transplant Patients. Ther Drug Monit 2016; 37:311-8. [PMID: 25380305 DOI: 10.1097/ftd.0000000000000151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The aim of this study was to evaluate particle enhanced turbidimetric inhibition immunoassay (PETINIA) recently developed for mycophenolic acid (MPA) determination in plasma and to compare it with a reference high-performance liquid chromatography (HPLC) method, using samples from heart transplant recipients. The results are presented in the context of PETINIA being compared with enzyme multiplied immunoassay technique (EMIT). METHODS PETINIA evaluation was performed using 194 routine trough plasma samples at steady state. EMIT was evaluated using 677 samples from 61 steady-state 12-hour profiles obtained from 35 heart transplant patients. Evaluation was undertaken on a Dimension EXL 200 analyzer (PETINIA) and on a Viva-E analyzer (EMIT). RESULTS The mean MPA concentration measured by PETINIA was significantly higher than that measured by high-performance liquid chromatography combined with UV detector (2.36 ± 1.30 mcg/mL versus 1.82 ± 1.23 mcg/mL, respectively, P < 0.0001). Bland-Altman analysis revealed a mean bias of 0.54 mcg/mL [95% confidence interval (CI), 0.49-0.59] comprising 33.48% (95% CI, 30.34-36.61). Passing-Bablok regression was: y = 1.100x + 0.38 (95% CI for slope: 1.044-1.154 and for intercept: 0.30-0.47). Regardless of a significant observed correlation (r = 0.9230, P < 0.0001), the statistical analyses showed a significant difference between PETINIA and the reference chromatographic method. The mean MPA concentration measured by EMIT was significantly higher than that measured by HPLC (7.48 ± 8.34 mcg/mL versus 5.57 ± 6.61 mcg/mL, respectively, P < 0.0001) with a mean bias of 1.91 mcg/mL (95% CI, 1.75-2.07) comprising 35.91% (95% CI, 34.37-37.45). The significant difference between EMIT and HPLC was confirmed by Passing-Bablok regression: y = 1.300x + 0.24 (95% CI for slope: 1.279-1.324 and for intercept: 0.18-0.29). The analysis of the determinations, grouped by sampling time, revealed positive bias between EMIT and HPLC ranging from 24.54% to 42.77% and inversely proportional to MPA concentrations with r = 0.9122 (P < 0.001). CONCLUSIONS The new immunochemical PETINIA method was associated with significantly higher MPA concentrations in routine therapeutic drug monitoring samples from heart transplant patients. The magnitude of the MPA overestimation was similar to that observed by use of the EMIT method.
Collapse
Affiliation(s)
- Paweł K Kunicki
- *Clinical Pharmacology Unit, Department of Clinical Biochemistry, Institute of Cardiology; and †Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland
| | | | | | | | | |
Collapse
|
6
|
Abd Rahman AN, Tett SE, Staatz CE. How accurate and precise are limited sampling strategies in estimating exposure to mycophenolic acid in people with autoimmune disease? Clin Pharmacokinet 2014; 53:227-245. [PMID: 24327238 DOI: 10.1007/s40262-013-0124-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. Dosing to achieve a specific target MPA area under the concentration-time curve from 0 to 12 h post-dose (AUC12) is likely to lead to better treatment outcomes in patients with autoimmune disease than a standard fixed-dose strategy. This review summarizes the available published data around concentration monitoring strategies for MPA in patients with autoimmune disease and examines the accuracy and precision of methods reported to date using limited concentration-time points to estimate MPA AUC12. A total of 13 studies were identified that assessed the correlation between single time points and MPA AUC12 and/or examined the predictive performance of limited sampling strategies in estimating MPA AUC12. The majority of studies investigated mycophenolate mofetil (MMF) rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation of MPA. Correlations between MPA trough concentrations and MPA AUC12 estimated by full concentration-time profiling ranged from 0.13 to 0.94 across ten studies, with the highest associations (r (2) = 0.90-0.94) observed in lupus nephritis patients. Correlations were generally higher in autoimmune disease patients compared with renal allograft recipients and higher after MMF compared with EC-MPS intake. Four studies investigated use of a limited sampling strategy to predict MPA AUC12 determined by full concentration-time profiling. Three studies used a limited sampling strategy consisting of a maximum combination of three sampling time points with the latest sample drawn 3-6 h after MMF intake, whereas the remaining study tested all combinations of sampling times. MPA AUC12 was best predicted when three samples were taken at pre-dose and at 1 and 3 h post-dose with a mean bias and imprecision of 0.8 and 22.6 % for multiple linear regression analysis and of -5.5 and 23.0 % for maximum a posteriori (MAP) Bayesian analysis. Although mean bias was less when data were analysed using multiple linear regression, MAP Bayesian analysis is preferable because of its flexibility with respect to sample timing. Estimation of MPA AUC12 following EC-MPS administration using a limited sampling strategy with samples drawn within 3 h post-dose resulted in biased and imprecise results, likely due to a longer time to reach a peak MPA concentration (t max) with this formulation and more variable pharmacokinetic profiles. Inclusion of later sampling time points that capture enterohepatic recirculation and t max improved the predictive performance of strategies to predict EC-MPS exposure. Given the considerable pharmacokinetic variability associated with mycophenolate therapy, limited sampling strategies may potentially help in individualizing patient dosing. However, a compromise needs to be made between the predictive performance of the strategy and its clinical feasibility. An opportunity exists to combine research efforts globally to create an open-source database for MPA (AUC, concentrations and outcomes) that can be used and prospectively evaluated for AUC target-controlled dosing of MPA in autoimmune diseases.
Collapse
Affiliation(s)
- Azrin N Abd Rahman
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia.,School of Pharmacy, International Islamic University of Malaysia, Kuantan, Pahang, Malaysia
| | - Susan E Tett
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia
| | - Christine E Staatz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, University of Queensland, 20 Cornwall St, Woolloongabba, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
7
|
Mohammadpour N, Elyasi S, Vahdati N, Mohammadpour AH, Shamsara J. A review on therapeutic drug monitoring of immunosuppressant drugs. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2011; 14:485-98. [PMID: 23493821 PMCID: PMC3586862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 03/27/2011] [Indexed: 12/03/2022]
Abstract
: Immunosuppressants require therapeutic drug monitoring because of their narrow therapeutic index and significant inter-individual variability in blood concentrations. This variability can be because of factors like drug-nutrient interactions, drug-disease interactions, renal-insufficiency, inflammation and infection, gender, age, polymorphism and liver mass. Drug monitoring is widely practiced especially for cyclosporine, tacrolimus, sirolimus and mycophenolic acid. CYCLOSPORINE: Therapeutic monitoring of immunosuppressive therapy with cyclosporine is a critical requirement because of intra- and inter-patient variability of drug absorption, narrow therapeutic window and drug induced nephrotoxicity. MYCOPHENOLIC ACID MPA: Some reasons for therapeutic drug monitoring of MPA during post-transplant period include: relationship between MPA pharmacokinetic parameters and clinical outcomes, Inter-patient pharmacokinetic variability for MPA despite fixed MMF doses, alternations of MPA pharmacokinetics during the first months after transplantation, drug- drug interaction and influence of kidney function on MPA pharmacokinetic. SIROLIMUS: A recent review of the pharmacokinetics of sirolimus suggested a therapeutic range of 5 to 10 μg l(-1) in whole blood. However, the only consensus guidelines published on the therapeutic monitoring of sirolimus concluded that there was not enough information available about the clinical use of the drug to make recommendations. TACROLIMUS: Sudies have shown, in kidney and liver transplant patients, significant associations of low tacrolimus concentrations with rejection and of high concentrations with nephrotoxicity. Although the feasibility of a limited sampling scheme to predict AUC has been demonstrated, as yet, trough, or pre-dose, whole blood concentration monitoring is still the method of choice.
Collapse
Affiliation(s)
- Niloufar Mohammadpour
- Department of Microbiology, School of Medicine, Islamic Azad University, Mashhad Branch, Mashhad, Iran
- Zakariya Research Centre, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Pharmacodinamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences,Mashhad, Iran
| | - Naser Vahdati
- Department of Pharmacodinamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences,Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Pharmacodinamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences,Mashhad, Iran
- Pharmaceutical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamal Shamsara
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Large scale analysis of routine dose adjustments of mycophenolate mofetil based on global exposure in renal transplant patients. Ther Drug Monit 2011; 33:285-94. [PMID: 21516060 DOI: 10.1097/ftd.0b013e31821633a6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We report a feasibility study based on our large-scale experience with mycophenolate mofetil dose adjustment based on mycophenolic acid interdose area under the curve (AUC) in renal transplant patients. METHODS Between 2005 and 2010, 13,930 requests for 7090 different patients (outside any clinical trial) were posted by more than 30 different transplantation centers on a free, secure web site for mycophenolate mofetil dose recommendations using three plasma concentrations and Bayesian estimation. RESULTS This retrospective study showed that 1) according to a consensually recommended 30- to 60-mg·h/L target, dose adjustment was needed for approximately 35% of the patients, 25% being underexposed with the highest proportion observed in the first weeks after transplantation; 2) when dose adjustment had been previously proposed, the subsequent AUC was significantly more often in the recommended range if the dose was applied than not at all posttransplantation periods (72-80% vs. 43-54%); and 3) the interindividual AUC variability in the "respected-dose" group was systematically lower than that in the "not respected-dose" group (depending on the posttransplantation periods; coefficient of variation %, 31-41% vs 49-70%, respectively). Further analysis suggested that mycophenolic acid AUC should best be monitored at least every 2 weeks during the first month, every 1 to 3 months between months 1 and 12, whereas in the stable phase, the odds to be still in the 30- to 60-mg·h/L range on the following visit was still 75% up to 1 year after the previous dose adjustment. CONCLUSION This study showed that the monitoring of mycophenolate mofetil on the basis of AUC measurements is a clinically feasible approach, apparently acceptable by the patients, the nurses, and the physicians owing to its large use in routine clinics.
Collapse
|
9
|
Oláh AV, Asztalos L, Ivády G, Varga E, Kovács AM, Kappelmayer J, Varga J. Monitoring of mycophenolic acid and kidney function during combined immunosuppressive therapy. Clin Chem Lab Med 2011; 49:1849-53. [PMID: 21848499 DOI: 10.1515/cclm.2011.678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Mycophenolic acid (MPA), a selective inhibitor of lymphocyte proliferation, has lately been used to improve renal function and prolong graft survival in renal transplanted patients. Still, there is no consensus considering the recommended dosing and the therapeutic range of MPA. METHODS To estimate the safe therapeutic range of MPA, its plasma level and indicators of kidney function were measured in 216 patients (138 male, 78 female, age 46 ± 12 years) 67 ± 46 months after transplantation. Besides MPA, patients received cyclosporine (Group A, n=122) or tacrolimus (Group B, n=77). Seventeen patients (Group C) were treated with MPA in combination with everolimus or sirolimus. Plasma MPA was measured by enzyme inhibition assay. RESULTS In the whole study group MPA level increased with the dose of MPA (p=0.013). MPA level was below the therapeutic range in 40% (Group A) and 45% (Group B) of patients, respectively. MPA was 1.9 ± 1.56 mg/L in Group A, 2.4 ± 1.69 mg/L in Group B. In Group A MPA level increased and cyclosporine decreased with the progress of renal disease. CONCLUSIONS Increasing MPA/cyclosporine ratio at more severe stages of chronic kidney disease was tolerable for the patients and rejection could be avoided. Tubular damage detected by urinary N-acetyl-β-D-glucosaminidase did not correlate with the MPA level.
Collapse
Affiliation(s)
- Anna V Oláh
- Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
10
|
Decavele ASC, Favoreel N, Heyden FV, Verstraete AG. Performance of the Roche Total Mycophenolic Acid® assay on the Cobas Integra 400®, Cobas 6000® and comparison to LC-MS/MS in liver transplant patients. Clin Chem Lab Med 2011; 49:1159-65. [DOI: 10.1515/cclm.2011.194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|