1
|
Sagcal-Gironella ACP, Merritt A, Mizuno T, Dharnidharka VR, McDonald J, DeGuzman M, Wahezi D, Goilav B, Onel K, Kim S, Cody E, Wu EY, Cannon L, Hayward K, Okamura DM, Patel PN, Greenbaum LA, Rouster-Stevens KA, Cooper JC, Ruth NM, Ardoin S, Cook K, Borgia RE, Hersh A, Huang B, Devarajan P, Brunner H. Efficacy and Safety of Pharmacokinetically-Driven Dosing of Mycophenolate Mofetil for the Treatment of Pediatric Proliferative Lupus Nephritis-A Double-Blind Placebo Controlled Clinical Trial (The Pediatric Lupus Nephritis Mycophenolate Mofetil Study). JOURNAL OF CLINICAL TRIALS 2024; 14:563. [PMID: 39035447 PMCID: PMC11258879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Background The safety and efficacy of mycophenolate mofetil (MMF) for lupus nephritis (LN) treatment is established in adults and in some children. MMF is rapidly converted to the biologically active metabolite mycophenolic acid (MPA) whose pharmacokinetics (PK) is characterized by large inter- and intra-individual variability. Methods/Design This randomized, double-blind, active comparator, controlled clinical trial of pediatric subjects with proliferative LN compares pharmacokinetically-guided precision-dosing of MMF (MMFPK, i.e. the dose is adjusted to the target area under the concentration-time curve (AUC0-12h) of MPA ≥ 60-70 mg*h/L) and MMF dosed per body surface area (MMFBSA, i.e. MMF dosed 600 mg/m2 body surface area), with MMF dosage taken about 12 hours apart. At baseline, subjects are randomized 1:1 to receive blinded treatment with MMFPK or MMFBSA for up to 53 weeks. The primary outcome is partial clinical remission of LN (partial renal response, PRR) at week 26, and the major secondary outcome is complete renal response (CRR) at week 26. Subjects in the MMFBSA arm with PRR at week 26 will receive MMFPK from week 26 onwards, while subjects with CRR will continue MMFBSA or MMFPK treatment until week 53. Subjects who achieve PRR at week 26 are discontinued from study intervention. Discussion The Pediatric Lupus Nephritis Mycophenolate Mofetil (PLUMM) study will provide a thorough evaluation of the PK of MMF in pediatric LN patients, yielding a head-to-head comparison of MMFBSA and MMFPK for both safety and efficacy. This study has the potential to change current treatment recommendations for pediatric LN, thereby significantly impacting childhood-onset SLE (cSLE) disease prognosis and current clinical practice.
Collapse
Affiliation(s)
- Anna Carmela P Sagcal-Gironella
- Division of Pediatric Rheumatology, Hackensack University Medical Center, Hackensack, New Jersey, USA
- Department of Pediatrics, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Angela Merritt
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tomoyuki Mizuno
- Division of Translational and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vikas R Dharnidharka
- Department of Pediatric Nephrology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph McDonald
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | - Marietta DeGuzman
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Dawn Wahezi
- Department of Pediatric Rheumatology, Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Beatrice Goilav
- Pediatric Nephrology, The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Karen Onel
- Department of Pediatric Rheumatology, Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Susan Kim
- Department of Rheumatology, University of California, San Francisco, California, USA
| | - Ellen Cody
- Department of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eveline Y Wu
- Department of Pediatric Rheumatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laura Cannon
- Department of Pediatric Rheumatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kristen Hayward
- Department of Pediatric Rheumatology, University of Washington, Seattle, Washington, USA
| | - Daryl M Okamura
- Department of Pediatric Nephrology, University of Washington, Seattle, Washington, USA
| | - Pooja N Patel
- Depatrment of Pediatric Rheumatology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| | - Larry A Greenbaum
- Department of Pediatric Nephrology, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelly A Rouster-Stevens
- Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jennifer C Cooper
- Department of Pediatric Rheumatology, University of Colorado, Denver, Colorado, USA
| | - Natasha M Ruth
- Department of Pediatric Rheumatology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Stacy Ardoin
- Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Kathryn Cook
- Division of Rheumatology, Akron Children’s, Akron, Ohio, USA
| | - R Ezequiel Borgia
- Department of Pediatric Allergy, Immunology and Rheumatology, UH Rainbow Babies & Children’s Hospital, Cleveland, Ohio, USA
| | - Aimee Hersh
- Department of Pediatrics, Immunology and Rheumatology, University of Utah, Salt Lake City, Utah, USA
| | - Bin Huang
- Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Prasad Devarajan
- Department of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hermine Brunner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Hepatic Transporters Alternations Associated with Non-alcoholic Fatty Liver Disease (NAFLD): A Systematic Review. Eur J Drug Metab Pharmacokinet 2023; 48:1-10. [PMID: 36319903 DOI: 10.1007/s13318-022-00802-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disorder and is usually accompanied by obesity, metabolic syndrome, and diabetes mellitus. NAFLD progression can lead to impaired functions of hepatocytes such as alternations in expression and function of hepatic transporters. The present study aimed to summarize and discuss the results of clinical and preclinical human studies that investigate the effect of NAFLD on hepatic transporters. METHODS The databases of PubMed, Scopus, Embase, and Web of Science were searched systematically up to 1 March 2022. The risk of bias was assessed for cross-sectional studies through the Newcastle-Ottawa Scale score. RESULTS Our review included ten cross-sectional studies consisting of 485 participants. Substantial alternations in hepatic transporters were seen during NAFLD progression to non-alcoholic steatohepatitis (NASH) in comparison with control groups. A significant reduction in expression and function of several hepatic uptake transporters, upregulation of many efflux transporters, downregulation of cholesterol efflux transporters, and mislocalization of canalicular transporter ABCC2 are associated with NAFLD progression. CONCLUSION Since extensive changes in hepatic transporters could alter the pharmacokinetics of the drugs and potentially affect the safety and efficacy of drugs, close monitoring of drug administration is highly suggested in patients with NASH.
Collapse
|
3
|
Research advances in the role and pharmaceuticals of ATP-binding cassette transporters in autoimmune diseases. Mol Cell Biochem 2022; 477:1075-1091. [PMID: 35034257 DOI: 10.1007/s11010-022-04354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Autoimmune diseases are caused by the immune response of the body to its antigens, resulting in tissue damage. The pathogenesis of these diseases has not yet been elucidated. Most autoimmune diseases cannot be cured by effective drugs. The treatment strategy is to relieve the symptoms of the disease and balance the body's autoimmune function. The abnormal expression of ATP-binding cassette (ABC) transporters is directly related to the pathogenesis of autoimmune diseases and drug therapy resistance, which poses a great challenge for the drug therapy of autoimmune diseases. Therefore, this paper reviews the interplay between ABC transporters and the pathogenesis of autoimmune diseases to provide research progress and new ideas for the development of drugs in autoimmune diseases.
Collapse
|
4
|
Resztak M, Sobiak J, Czyrski A. Recent Advances in Therapeutic Drug Monitoring of Voriconazole, Mycophenolic Acid, and Vancomycin: A Literature Review of Pediatric Studies. Pharmaceutics 2021; 13:1991. [PMID: 34959272 PMCID: PMC8707246 DOI: 10.3390/pharmaceutics13121991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 01/05/2023] Open
Abstract
The review includes studies dated 2011-2021 presenting the newest information on voriconazole (VCZ), mycophenolic acid (MPA), and vancomycin (VAN) therapeutic drug monitoring (TDM) in children. The need of TDM in pediatric patients has been emphasized by providing the information on the differences in the drugs pharmacokinetics. TDM of VCZ should be mandatory for all pediatric patients with invasive fungal infections (IFIs). Wide inter- and intrapatient variability in VCZ pharmacokinetics cause achieving and maintaining therapeutic concentration during therapy challenging in this population. Demonstrated studies showed, in most cases, VCZ plasma concentrations to be subtherapeutic, despite the updated dosages recommendations. Only repeated TDM can predict drug exposure and individualizing dosing in antifungal therapy in children. In children treated with mycophenolate mofetil (MMF), similarly as in adult patients, the role of TDM for MMF active form, MPA, has not been well established and is undergoing continued debate. Studies on the MPA TDM have been carried out in children after renal transplantation, other organ transplantation such as heart, liver, or intestine, in children after hematopoietic stem cell transplantation or cord blood transplantation, and in children with lupus, nephrotic syndrome, Henoch-Schönlein purpura, and other autoimmune diseases. MPA TDM is based on the area under the concentration-time curve; however, the proposed values differ according to the treatment indication, and other approaches such as pharmacodynamic and pharmacogenetic biomarkers have been proposed. VAN is a bactericidal agent that requires TDM to prevent an acute kidney disease. The particular group of patients is the pediatric one. For this group, the general recommendations of the dosing may not be valid due to the change of the elimination rate and volume of distribution between the subjects. The other factor is the variability among patients that concerns the free fraction of the drug. It may be caused by both the patients' population and sample preconditioning. Although VCZ, MMF, and VAN have been applied in pediatric patients for many years, there are still few issues to be solve regarding TDM of these drugs to ensure safe and effective treatment. Except for pharmacokinetic approach, pharmacodynamics and pharmacogenetics have been more often proposed for TDM.
Collapse
Affiliation(s)
- Matylda Resztak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Street, 60-781 Poznań, Poland; (J.S.); (A.C.)
| | | | | |
Collapse
|
5
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
6
|
Benjanuwattra J, Pruksakorn D, Koonrungsesomboon N. Mycophenolic Acid and Its Pharmacokinetic Drug‐Drug Interactions in Humans: Review of the Evidence and Clinical Implications. J Clin Pharmacol 2019; 60:295-311. [DOI: 10.1002/jcph.1565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center Chiang Mai University Chiang Mai Thailand
- Department of Orthopedics, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Musculoskeletal Science and Translational Research Center Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
7
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
8
|
Silva CA, Aikawa NE, Pereira RMR, Campos LMA. Management considerations for childhood-onset systemic lupus erythematosus patients and implications on therapy. Expert Rev Clin Immunol 2015; 12:301-13. [DOI: 10.1586/1744666x.2016.1123621] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Clovis Artur Silva
- Pediatric Rheumatology Unit, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Emi Aikawa
- Pediatric Rheumatology Unit, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Rheumatology Division, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
9
|
Yang X, Sherwin CMT, Yu T, Yellepeddi VK, Brunner HI, Vinks AA. Pharmacokinetic modeling of therapies for systemic lupus erythematosus. Expert Rev Clin Pharmacol 2015; 8:587-603. [PMID: 26143647 DOI: 10.1586/17512433.2015.1059751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With the increasing use of different types of therapies in treating autoimmune diseases such as systemic lupus erythematosus (SLE), there is a need to utilize pharmacokinetic (PK) strategies to optimize the clinical outcome of these treatments. Various PK analysis approaches, including population PK modeling and physiologically based PK modeling, have been used to evaluate drug PK characteristics and population variability or to predict drug PK profiles in a mechanistic manner. This review outlines the PK modeling of major SLE therapies including immunosuppressants (methotrexate, azathioprine, mycophenolate and cyclophosphamide, among others) and immunomodulators (intravenous immunoglobulin). It summarizes the population PK modeling, physiologically based PK modeling and model-based individualized dosing strategies to improve the therapeutic outcomes in SLE patients.
Collapse
Affiliation(s)
- Xiaoyan Yang
- a 1 Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
10
|
El-Sheikh AAK, Koenderink JB, Wouterse AC, van den Broek PHH, Verweij VGM, Masereeuw R, Russel FGM. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res 2014; 164:46-56. [PMID: 24486136 DOI: 10.1016/j.trsl.2014.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alfons C Wouterse
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Vivienne G M Verweij
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Dong M, Fukuda T, Vinks AA. Optimization of Mycophenolic Acid Therapy Using Clinical Pharmacometrics. Drug Metab Pharmacokinet 2014; 29:4-11. [DOI: 10.2133/dmpk.dmpk-13-rv-112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
El-Sheikh AAK, Greupink R, Wortelboer HM, van den Heuvel JJMW, Schreurs M, Koenderink JB, Masereeuw R, Russel FGM. Interaction of immunosuppressive drugs with human organic anion transporter (OAT) 1 and OAT3, and multidrug resistance-associated protein (MRP) 2 and MRP4. Transl Res 2013; 162:398-409. [PMID: 24036158 DOI: 10.1016/j.trsl.2013.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/11/2013] [Accepted: 08/16/2013] [Indexed: 01/30/2023]
Abstract
Renal proximal tubule transporters can play a key role in excretion, pharmacokinetic interactions, and toxicity of immunosuppressant drugs. Basolateral organic anion transporters (OATs) and apical multidrug resistance-associated proteins (MRPs) contribute to the active tubular uptake and urinary efflux of these drugs, respectively. We studied the interaction of 12 immunosuppressants with OAT1- and OAT3-mediated [(3)H]-methotrexate (MTX) uptake in cells, and adenosine triphosphate-dependent [(3)H]-MTX transport in membrane vesicles isolated from human embryonic kidney 293 cells overexpressing human MRP2 and MRP4. Our results show that at a clinically relevant concentration of 10 μM, mycophenolic acid inhibited both OAT1- and OAT3-mediated [(3)H]-MTX uptake. Cytarabine, vinblastine, vincristine, hydrocortisone, and mitoxantrone inhibited only OAT1, whereas tacrolimus, azathioprine, dexamethasone, cyclosporine, and 6-mercaptopurine had no effect on both transporters. Cyclophosphamide stimulated OAT1, but did not affect OAT3. With regard to the apical efflux transporters, mycophenolic acid, cyclophosphamide, hydrocortisone, and tacrolimus inhibited MRP2 and MRP4, whereas mitoxantrone and dexamethasone stimulated [(3)H]-MTX transport by both transporters. Cyclosporine, vincristine, and vinblastine inhibited MRP2 only, whereas 6-mercaptopurine inhibited MRP4 transport activity only. Cytarabine and azathioprine had no effect on either transporter. In conclusion, we charted comprehensively the differences in inhibitory action of various immunosuppressive agents against the 4 key renal anion transporters, and we provide evidence that immunosuppressant drugs can modulate OAT1-, OAT3-, MRP2-, and MRP4-mediated transport of MTX to different extents. The data provide a better understanding of renal mechanisms underlying drug-drug interactions and nephrotoxicity concerning combination regimens with these compounds in the clinic.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minya, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
13
|
High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther 2013; 51:711-7. [PMID: 23782584 PMCID: PMC3758456 DOI: 10.5414/cp201884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2013] [Indexed: 11/25/2022] Open
Abstract
Objective: Mycophenolic acid (MPA) exposure is associated with clinical outcomes in hematopoietic cell transplant (HCT) recipients. Various drug interaction studies, predominantly in healthy volunteers or solid organ transplant recipients, have identified medications which impact MPA pharmacokinetics. Recipients of nonmyeloablative HCT, however, have an increased burden of comorbidities, potentially increasing the number of concomitant medications and potential drug interactions (PDI) affecting MPA exposure. Thus, we sought to be the first to characterize these PDI in nonmyeloablative HCT recipients. Materials and methods: We compiled PDI affecting MPA pharmacokinetics and characterized the prevalence of PDI in nonmyeloablative HCT recipients. A comprehensive literature evaluation of four databases and PubMed was conducted to identify medications with PDI affecting MPA pharmacokinetics. Subsequently, a retrospective medication review was conducted to characterize the cumulative PDI burden, defined as the number of PDI for an individual patient over the first 21 days after allogeneic graft infusion, in 84 nonmyeloablative HCT recipients. Results: Of the 187 concomitant medications, 11 (5.9%) had a PDI affecting MPA pharmacokinetics. 87% of 84 patients had one PDI, with a median cumulative PDI burden of 2 (range 0 – 4). The most common PDI, in descending order, were cyclosporine, omeprazole and pantoprazole. Conclusion: Only a minority of medications (5.9%) have a PDI affecting MPA pharmacokinetics. However, the majority of nonmyeloablative HCT recipients had a PDI, with cyclosporine and the proton pump inhibitors being the most common. A better understanding of PDI and their management should lead to safer medication regimens for nonmyeloablative HCT recipients.
Collapse
|
14
|
Abd Rahman AN, Tett SE, Staatz CE. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Patients with Autoimmune Disease. Clin Pharmacokinet 2013; 52:303-31. [DOI: 10.1007/s40262-013-0039-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|