1
|
Mans JC, Dong X. The Development of Lipid-Based Sorafenib Granules to Enhance the Oral Absorption of Sorafenib. Pharmaceutics 2023; 15:2691. [PMID: 38140031 PMCID: PMC10747400 DOI: 10.3390/pharmaceutics15122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Sorafenib (SFN) is an anticancer multi-kinase inhibitor with great therapeutic potential. However, SFN has low aqueous solubility, which limits its oral absorption. Lipids and surfactants have the potential to improve the solubility of water-insoluble drugs. The aim of this study is thus to develop novel lipid-based SFN granules that can improve the oral absorption of SFN. SFN powder was coated with a stable binary lipid mixture and then absorbed on Aeroperl 300 to form dry SFN granules with 10% drug loading. SFN granules were stable at room temperature for at least three months. Compared to SFN powder, SFN granules significantly increased SFN release in simulated gastric fluid and simulated intestinal fluid with pancreatin. Pharmacokinetics and tissue distribution of SFN granules and SFN powder were measured following oral administration to Sprague Dawley rats. SFN granules significantly increased SFN absorption compared to SFN powder. Overall, the lipid-based SFN granules provide a promising approach to enhancing the oral absorption of SFN.
Collapse
Affiliation(s)
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
2
|
Elawady T, Al-Abd AM, Khedr A, El-Enany N, Belal F. LC-MS/MS monitoring of the colorectal carcinoma cellular uptake and entrapment of sorafenib and its N-oxide active metabolite. J Pharm Biomed Anal 2022; 213:114687. [PMID: 35240408 DOI: 10.1016/j.jpba.2022.114687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Sorafenib (SOR) is a multikinase inhibitor with a mild activity against colorectal cancer cells due to multi-drug resistance mechanisms. Potentiated SOR activity was expected upon combination with some ginger derived compounds due to their interference with intracellular drug metabolism. Studying such combination necessitates the development of a sensitive validated LC-MS/MS method for the determination of intra and extracellular concentration of SOR and its N-oxide metabolite (SNX) in colorectal cancer cells. SOR, SNX and the internal standard (diclofenac sodium) were efficiently separated on Eclipse plus C18 column (3.0 ×150 mm, 5 µm) using isocratic elution with acetonitrile and 0.01 M ammonium formate aqueous solution containing 0.1% formic acid (69:31, v/v). Sample pretreatment using solid phase extraction was optimized and the mean percent recoveries were more than 97.01% for both analytes. Detection was conducted at positive ion multiple reaction monitoring (MRM) mode and the monitored mass transitions were 465.2 → 252.2 for SOR and 481.1 → 286.0 for SNX. The method was linear over the range 0.25 - 200.00 ng/mL (r2 ≥ 0.9992) for SOR and 0.10 - 125.00 ng/mL (r2 ≥ 0.9990) for SNX in both intra and extracellular matrices. The lower limits of quantification (LLOQ) were 0.25 and 0.10 ng/mL for SOR and SNX, respectively. Accuracies were within 94.25 - 109.45% and precision CV values did not exceed 7.63%. The method was able to monitor the cellular uptake and entrapment of both analytes and to prove the positive effect of the ginger derived compounds on SOR activity.
Collapse
Affiliation(s)
- Tarek Elawady
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia.
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE; Department of Pharmacology, Medical Division, National Research Centre, Cairo 12622, Egypt
| | - Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Nahed El-Enany
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, New Mansoura University, P.O. Box 7723730, New Mansoura, Egypt
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt
| |
Collapse
|
3
|
Negrete M, Romero-Ben E, Gutiérrez-Valencia A, Rosales-Barrios C, Alés E, Mena-Barragán T, Flores JA, Castillejos MC, de la Cruz-Ojeda P, Navarro-Villarán E, Cepeda-Franco C, Khiar N, Muntané J. PDA-Based Glyconanomicelles for Hepatocellular Carcinoma Cells Active Targeting Via Mannose and Asialoglycoprotein Receptors. ACS APPLIED BIO MATERIALS 2021; 4:4789-4799. [DOI: 10.1021/acsabm.0c01679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- María Negrete
- Hospital University “Virgen del Rocío”/CSIC/University of Seville, Institute of Biomedicine of Seville, Seville, Spain
| | - Elena Romero-Ben
- Institute of Chemical Research, CSIC/University of Seville, Seville, Spain
| | - Alicia Gutiérrez-Valencia
- Hospital University “Virgen del Rocío”/CSIC/University of Seville, Institute of Biomedicine of Seville, Seville, Spain
| | | | - Eva Alés
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | | | - Juan A. Flores
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | | | - Patricia de la Cruz-Ojeda
- Hospital University “Virgen del Rocío”/CSIC/University of Seville, Institute of Biomedicine of Seville, Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases, Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Hospital University “Virgen del Rocío”/CSIC/University of Seville, Institute of Biomedicine of Seville, Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases, Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Carmen Cepeda-Franco
- Department of General Surgery, Hospital University “Virgen del Rocío”/CSIC/University of Seville/IBiS, Seville, Spain
| | - Noureddine Khiar
- Institute of Chemical Research, CSIC/University of Seville, Seville, Spain
| | - Jordi Muntané
- Hospital University “Virgen del Rocío”/CSIC/University of Seville, Institute of Biomedicine of Seville, Seville, Spain
- Networked Biomedical Research Center Hepatic and Digestive Diseases, Madrid, Spain
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| |
Collapse
|
4
|
Sabourian R, Mirjalili SZ, Namini N, Chavoshy F, Hajimahmoodi M, Safavi M. HPLC methods for quantifying anticancer drugs in human samples: A systematic review. Anal Biochem 2020; 610:113891. [PMID: 32763305 DOI: 10.1016/j.ab.2020.113891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/09/2020] [Accepted: 07/24/2020] [Indexed: 01/11/2023]
Abstract
Pharmacokinetic (PK) study of anticancer drugs in cancer patients is highly crucial for dose selection and dosing intervals in clinical applications. Once an anticancer drug is administered, it undergoes various metabolic pathways; to determine these pathways, it is necessary to follow the administered drug in biological samples via different analytical methods. In addition, multi-drug quantification methods in patients undergoing multi-drug regimens of cancer therapy can have several benefits, such as reduced sampling time and analysis costs. In order to collect and categorize these studies, we conducted a systematic review of HPLC methods reported for the analysis of anticancer drugs in biological samples. A systematic search was performed on PubMed Medline, Scopus, and Web of Science databases, and 116 studies were included. In summary of included studies, when the objective of a method was to quantify a single drug, MS, or UV detectors were utilized equivalently. On the other hand, in methods with the aim of quantifying drug and metabolite(s) in a single run, MS detectors were the most utilized. This review can provide a comprehensive insight for researchers prior to developing a quantification method and selecting a detector.
Collapse
Affiliation(s)
- Reyhaneh Sabourian
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyedeh Zohreh Mirjalili
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Negar Namini
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Chavoshy
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| |
Collapse
|
5
|
van Nuland M, Rosing H, Schellens JHM, Beijnen JH. Bioanalytical LC-MS/MS validation of therapeutic drug monitoring assays in oncology. Biomed Chromatogr 2019; 34:e4623. [PMID: 31215049 DOI: 10.1002/bmc.4623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
Therapeutic drug monitoring (TDM) has shown to benefit patients treated with drugs of many drug classes, among which is oncology. With an increasing demand for drug monitoring, new assays have to be developed and validated. Guidelines for bioanalytical validation issued by the European Medicines Agency and US Food and Drug Administration are applicable for clinical trials and toxicokinetic studies and demand fully validated bioanalytical methods to yield reliable results. However, for TDM assays a limited validation approach is suggested based on the intended use of these methods. This review presents an overview of publications that describe method validation of assays specifically designed for TDM. In addition to evaluating current practice, we provide recommendations that could serve as a guide for future validations of TDM assays.
Collapse
Affiliation(s)
- Merel van Nuland
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan H M Schellens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
A simple, rapid and sensitive RP-HPLC-UV method for the simultaneous determination of sorafenib & paclitaxel in plasma and pharmaceutical dosage forms: Application to pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1033-1034:261-270. [DOI: 10.1016/j.jchromb.2016.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/13/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
|
7
|
The interaction of sorafenib and regorafenib with membranes is modulated by their lipid composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2871-2881. [PMID: 27581086 DOI: 10.1016/j.bbamem.2016.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/29/2016] [Accepted: 08/25/2016] [Indexed: 11/22/2022]
Abstract
Sorafenib and regorafenib are small-molecule kinase inhibitors approved for the treatment of locally recurrent or metastatic, progressive, differentiated thyroid carcinoma, renal cell carcinoma, and hepatocellular carcinoma (sorafenib) and of colorectal cancer (regorafenib). As of now, the mechanisms, which are responsible for their antitumor activities, are not completely understood. Given the lipophilic nature of the molecules, it can be hypothesized that the pharmacological impact is mediated by the interaction with cellular membranes as it is true for many pharmacologically active molecules. However, an interaction of sorafenib or regorafenib with lipid membranes has not yet been investigated in detail. Here, we characterized the interaction of both drugs with lipid membranes by applying a variety of biophysical approaches including nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that sorafenib and regorafenib bind to lipid membranes by inserting into the lipid-water interface of the bilayer. This membrane embedding causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. One approach shows that the extent of the effects depends on the membrane lipid composition underlining a particular role of phosphatidylcholine and cholesterol. Our data for the first time characterize the impact of sorafenib and regorafenib on the lipid membrane structure and dynamics, which may contribute to a better understanding of their effectiveness in the treatment of malignancies as well as of their side effects.
Collapse
|
8
|
Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. J Pharm Biomed Anal 2016; 130:244-263. [PMID: 27460293 DOI: 10.1016/j.jpba.2016.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 01/03/2023]
Abstract
In recent years (2010-present) there has been an increase in the number of publications reporting the development, validation and use of bioanalytical methods in the rapidly expanding drug class of small molecule protein kinase inhibitors. Most reports describe the technological set-up of the methods that have allowed for drug concentration measurements from various sample types. This includes plasma, dried blood-spot, and tissue-analysis. Also method development, exploration of various techniques, as well as measurement and identification of metabolites were addressed. For the bioanalysis, a variety of sample-pretreatment methods like protein-precipitation, liquid-liquid extraction, and solid-phase extraction have been employed, all varying in complexity, cleanliness and time-consumption. Chromatographic separation, nowadays, is more focused on separating components from ion-suppressive effects, since for MS/MS detection, various components do not have to be baseline separated. For detection multiple types of detectors were used, ranging from state-of-the-art high resolution, and tandem mass spectrometry with low picogram per milliliter detection limits to the classical UV-detector with several nanograms per milliliter limits. As new bioanalytical methods have arisen that do rely on chromatographic separation, for example for high-throughput analysis, these are addressed in this review as well.
Collapse
|
9
|
Wang X, Zhang X, Huang X, Li Y, Wu M, Liu J. The drug–drug interaction of sorafenib mediated by P-glycoprotein and CYP3A4. Xenobiotica 2015; 46:651-658. [DOI: 10.3109/00498254.2015.1109160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Saita T, Yamamoto Y, Noda S, Shioya M, Hira D, Andoh A, Morita SY, Terada T, Shin M. Quantification of Sorafenib in Human Serum by Competitive Enzyme-Linked Immunosorbent Assay. Biol Pharm Bull 2015; 38:1788-93. [DOI: 10.1248/bpb.b15-00484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tetsuya Saita
- Applied Life Science Department, Faculty of Biotechnology and Life Science, Sojo University
| | - Yuta Yamamoto
- Applied Life Science Department, Faculty of Biotechnology and Life Science, Sojo University
| | - Satoshi Noda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Makoto Shioya
- Department of Gastroenterology, Shiga University of Medical Science Hospital
| | - Daiki Hira
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Akira Andoh
- Department of Gastroenterology, Shiga University of Medical Science Hospital
| | - Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Masashi Shin
- Applied Life Science Department, Faculty of Biotechnology and Life Science, Sojo University
| |
Collapse
|
11
|
Sharma K, Suresh PS, Mullangi R, Srinivas NR. Quantitation of VEGFR2 (vascular endothelial growth factor receptor) inhibitors - review of assay methodologies and perspectives. Biomed Chromatogr 2014; 29:803-34. [DOI: 10.1002/bmc.3370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Kuldeep Sharma
- Jubilant Biosys, Second Stage; Industrial Suburb; Yeswanthpur Bangalore- 560 022 India
| | - P. S. Suresh
- Jubilant Biosys, Second Stage; Industrial Suburb; Yeswanthpur Bangalore- 560 022 India
| | - Ramesh Mullangi
- Jubilant Biosys, Second Stage; Industrial Suburb; Yeswanthpur Bangalore- 560 022 India
| | - N. R. Srinivas
- Semler Research; VI Phase, J. P. Nagar Bangalore- 560 078 India
- CEO, Bioneeds India Private Lmited, Tumkur Road; Nelamangala Taluk, Bangalore Rural District; India
| |
Collapse
|
12
|
Huillard O, Boissier E, Blanchet B, Thomas-Schoemann A, Cessot A, Boudou-Rouquette P, Durand JP, Coriat R, Giroux J, Alexandre J, Vidal M, Goldwasser F. Drug safety evaluation of sorafenib for treatment of solid tumors: consequences for the risk assessment and management of cancer patients. Expert Opin Drug Saf 2014; 13:663-73. [PMID: 24693873 DOI: 10.1517/14740338.2014.907270] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Sorafenib is a multi-tyrosine kinase inhibitor (TKI). Considerable clinical experience has been accumulated since its first Phase III clinical trial in metastatic renal cancer patients in 2007. The management of its early acute toxicity in fit patients is well known. The management of prolonged treatment becomes the new challenge. AREAS COVERED Using sorafenib as a key word for PubMed search, we review preclinical and clinical data and discuss the pharmacokinetics and pharmacodynamics of sorafenib, its acute and cumulative toxicities and their consequences for patient management. EXPERT OPINION The systematic multi-disciplinary risk assessment of cancer patients prior to TKI initiation reduces the risks of acute and late toxicity, especially drug-drug interactions and arterial risks. Sarcopenia is now identified as a major risk of severe toxicity. The very diverse clinical pictures of cumulative toxicity must be known. The monitoring of sorafenib systemic exposure is helpful especially in elderly patients. Moreover, at disease progression, it allows distinguishing between underexposure to sorafenib and truly acquired resistance to the drug. The optimal use of sorafenib should allow improving the reported results of flat-dose. Finally, most of this knowledge could be used for the development and optimal use of the other TKIs.
Collapse
Affiliation(s)
- Olivier Huillard
- Paris Descartes University, Cochin Hospital, AP-HP, Medical Oncology Department, Angiogenesis Inhibitors Multidisciplinary Study Group (CERIA) , Paris , France +33 1 58 41 17 46 ; +33 1 58 41 17 45 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lupescu A, Shaik N, Jilani K, Zelenak C, Lang E, Pasham V, Zbidah M, Plate A, Bitzer M, Föller M, Qadri SM, Lang F. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: an in vivo and in vitro study. Cell Physiol Biochem 2012; 30:876-88. [PMID: 22907570 DOI: 10.1159/000341465] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sorafenib (Nexavar(®)), a polytyrosine kinase inhibitor, stimulates apoptosis and is thus widely used for chemotherapy in hepatocellular carcinoma (HCC). Hematological side effects of Nexavar(®) chemotherapy include anemia. Erythrocytes may undergo apoptosis-like suicidal death or eryptosis, which is characterized by cell shrinkage and phosphatidylserine-exposure at the cell surface. Signaling leading to eryptosis include increase in cytosolic Ca(2+)activity ([Ca(2+)](i)), formation of ceramide, ATP-depletion and oxidative stress. The present study explored, whether sorafenib triggers eryptosis in vitro and in vivo. METHODS [Ca(2+)](i )was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine-exposure from annexin-V-binding, hemolysis from hemoglobin release, ceramide with antibody binding-dependent fluorescence, cytosolic ATP with a luciferin-luciferase-based assay, and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence. RESULTS A 48 h exposure of erythrocytes to sorafenib (≥0.5 µM) significantly increased Fluo 3 fluorescence, decreased forward scatter, increased annexin-V-binding and triggered slight hemolysis (≥5 µM), but did not significantly modify ceramide abundance and cytosolic ATP. Sorafenib treatment significantly enhanced DCFDA-fluorescence and the reducing agents N-acetyl-L-cysteine and tiron significantly blunted sorafenib-induced phosphatidylserine exposure. Nexavar(®) chemotherapy in HCC patients significantly enhanced the number of phosphatidylserine-exposing erythrocytes. CONCLUSIONS The present observations disclose novel effects of sorafenib, i.e. stimulation of suicidal erythrocyte death or eryptosis, which may contribute to the pathogenesis of anemia in Nexavar(®)-based chemotherapy.
Collapse
|