2
|
Brunet M, Millán O. Getting immunosuppression just right: the role of clinical biomarkers in predicting patient response post solid organ transplantation. Expert Rev Clin Pharmacol 2021; 14:1467-1479. [PMID: 34607521 DOI: 10.1080/17512433.2021.1987882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Actually, immunosuppression selection isn't based on individual immune alloreactivity, and immunosuppressive drug dosing is mainly based on the development of toxicity and the achievement of specific target concentrations. Since a successful outcome requires optimal patient risk stratification and treatment, several groups have evaluated candidate biomarkers that have shown promise in the assessment of individual immune responses, the prediction of personal pharmacodynamic effects of immunosuppressive drugs and the prognosis and diagnosis of graft outcomes.. AREAS COVERED This review includes biomarkers that the Scientific Community in Solid Organ Transplantation currently considers to have potential as diagnostic and prognostic biomarkers of graft evolution. We have focused on recent scientific advances and expert recommendations regarding the role of specific and non-specific pharmacodynamic biomarkers that are mainly involved in the T-cell-mediated response. EXPERT OPINION Integral pharmacologic monitoring that combines pharmacokinetics, pharmacogenetics and predictive pharmacodynamic biomarkers may provide crucial information and allow personal adjustment of immunosuppressive drugs at an early stage before severe adverse events ensue. Multicentre, randomized, prospective and interventional trials are needed to fine tune the established cut-off values for each biomarker and the optimal monitoring frequency for each biomarker and to accurately evaluate possible clinical confounding factors to enable correct clinical qualification.
Collapse
Affiliation(s)
- Mercè Brunet
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Millán
- Pharmacology and Toxicology Section, CDB, IDIBAPS, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain.,Biomedical Research Center in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Neuberger M, Sommerer C, Böhnisch S, Metzendorf N, Mehrabi A, Stremmel W, Gotthardt D, Zeier M, Weiss KH, Rupp C. Effect of mycophenolic acid on inosine monophosphate dehydrogenase (IMPDH) activity in liver transplant patients. Clin Res Hepatol Gastroenterol 2020; 44:543-550. [PMID: 31924555 DOI: 10.1016/j.clinre.2019.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Due to the development of immunosuppressants, the focus in transplanted patients has shifted from short-term to long-term survival as well as a better adjustment of these drugs in order to prevent over- and under-immunosuppression. Mycophenolic acid (MPA) is a noncompetitive inhibitor of inosine monophosphate dehydrogenase (IMPDH) and approved for prophylaxis of acute rejection after kidney, heart, and liver transplantation, where it has become a part of the standard therapy. Targeting inosine monophosphate IMPDH activity as a surrogate pharmacodynamic marker of MPA-induced immunosuppression may allow a more accurate assessment of efficacy and aid in limiting toxicity in liver transplanted patients. AIM Assess IMPDH-inhibition in liver transplant recipients and its impact on biliary/infectious complications, acute cellular rejection (ACR) and liver dependent survival. METHODS This observational cohort study comprises 117 liver transplanted patients that were treated with mycophenolate mofetil (MMF) for at least 3 months. Blood samples (BS) were collected and MPA serum level and IMPDH activity were measured before (t(0)), 30minutes (t(30)) and 2h after (t(120)) MMF morning dose administration. Regarding MPA, we assessed the area under the curve (AUC). Patients were prospectively followed up for one year and assessed for infectious and biliary complications, episodes of ACR and liver dependent survival. RESULTS The MPA levels showed a broad interindividual variability at t(0) (2.0±1.8ng/ml), t(30) (12.7±9.0ng/ml) and t(120) (7.5±4.3ng/ml). Corresponding IMPDH activity was at t(o) (23.2±9.5 nmol/h/mg), at t(30) (16.3±8.8 nmol/h/mg) and t(120) (18.2±8.7 nmol/h/mg). With regard to MPA level we found no correlation with infectious or biliary complications within the follow-up period. Patients with baseline IMPDH(a) below the median had significant more viral infections (6 (10.2%) vs. 17 (29.3%); P=0.009) with especially more cytomegalovirus (CMV) infections (1 (3.4%) vs. 6 (21.4%); P=0.03)). Furthermore, patients with baseline IMPDH(a) above the median developed more often non-anastomotic biliary strictures (8 (13.6%) vs. 1 (1.7%), P=0.03). We found the group reaching the combined clinical endpoint of death and re-transplantation showing significantly lower MPA baseline values (t(0) 0.9±0.7 vs. 2.1±1.8μg/ml Mann-Whitney-U: P=0.02). We calculated a simplified MPA(AUC) with the MPA level at baseline, 30 and 120minutes after MPA administration. Whereas we found no differences with regard to baseline characteristics at entry into the study patients with MPA (AUC) below the median experienced significantly more often the combined clinical endpoint (12.1% (7/58) vs. 0.0% (0/57); P=0.002) and had a reduced actuarial re-transplantation-free survival (1.0 year vs. 0.58 years; Log-rank: P=0.007) during the prospective one-year follow-up period. In univariate and multivariate analysis including gender, age, BMI, ACR, MPA (AUC) and IMPDH(a) only BMI, MPA (AUC) and IMPDH(a) were independently associated with reduced actuarial re-transplantation-free survival. CONCLUSION MPA-levels and IMPDH-activity in liver transplanted patients allows individual risk assessment. Patients with higher IMPDH inhibition acquire more often viral infections. Insufficient IMPDH inhibition is associated with development of non-anastomotic bile duct strictures and reduced re-transplantation-free survival.
Collapse
Affiliation(s)
- M Neuberger
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - C Sommerer
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - S Böhnisch
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - N Metzendorf
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - A Mehrabi
- University of Heidelberg, Department of General, Visceral, and Transplantation Surgery, 69120 Heidelberg, Germany
| | - W Stremmel
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - D Gotthardt
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - M Zeier
- University Hospital Heidelberg, Division of Nephrology, 69120 Heidelberg, Germany
| | - K H Weiss
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany
| | - C Rupp
- University Hospital Heidelberg, Internal Medicine IV, 69120 Heidelberg, Germany.
| |
Collapse
|
6
|
Klaasen RA, Bergan S, Bremer S, Hole K, Nordahl CB, Andersen AM, Midtvedt K, Skauby MH, Vethe NT. Pharmacodynamic assessment of mycophenolic acid in resting and activated target cell population during the first year after renal transplantation. Br J Clin Pharmacol 2020; 86:1100-1112. [PMID: 31925806 PMCID: PMC7256122 DOI: 10.1111/bcp.14218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 12/31/2022] Open
Abstract
Aims To explore the pharmacodynamics of mycophenolic acid (MPA) through inosine monophosphate dehydrogenase (IMPDH) capacity measurement and purine levels in peripheral blood mononuclear cells (PBMC) longitudinally during the first year after renal transplantation (TX). Methods PBMC were isolated from renal recipients 0–4 days prior to and 6–9 days, 5–7 weeks and 1 year after TX (before and 1.5 hours after dose). IMPDH capacity and purine (guanine and adenine) levels were measured in stimulated and nonstimulated PBMC. Results Twenty‐nine patients completed the follow‐up period, of whom 24 received MPA. In stimulated PBMC, the IMPDH capacity (pmol 10−6 cells min−1) was median (interquartile range) 127 (95.8–147) before TX and thereafter 44.9 (19.2–93.2) predose and 12.1 (4.64–23.6) 1.5 hours postdose across study days after TX. The corresponding IMPDH capacity in nonstimulated PBMC was 5.71 (3.79–6.93), 3.35 (2.31–5.62) and 2.71 (1.38–4.08), respectively. Predose IMPDH capacity in nonstimulated PBMC increased with time, reaching pre‐TX values at 1 year. In stimulated PBMC, both purines were reduced before (median 39% reduction across days after TX) and after (69% reduction) dose compared to before TX. No alteration in the purine levels was observed in nonstimulated PBMC. Patients needing dose reductions during the first year had lower pre‐dose IMPDH capacity in nonstimulated PBMC (1.87 vs 3.00 pmol 10−6 cells min−1, P = .049) at 6–9 days. Conclusion The inhibitory effect of MPA was stronger in stimulated PBMC. Nonstimulated PBMC became less sensitive to MPA during the first year after TX. Early IMPDH capacity appeared to be predictive of dose reductions.
Collapse
Affiliation(s)
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | - Sara Bremer
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kristine Hole
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| | | | | | - Karsten Midtvedt
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Heier Skauby
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Wang L, Qiang W, Li Y, Cheng Z, Xie M. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography. Biomed Chromatogr 2017; 31. [PMID: 28205247 DOI: 10.1002/bmc.3958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 02/01/2017] [Accepted: 02/11/2017] [Indexed: 11/09/2022]
Abstract
Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL-1 , with both intra- and inter-day precision being <7% and biases <10%. The freeze-dried samples were stable at ambient temperature for at least 40 days. This method was also successfully applied to the pharmacokinetic study of MPA in healthy volunteers. Pharmacokinetic parameters, such as maximum plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Sciences, Central South University, Changsha, Hunan, China.,Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wei Qiang
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Ying Li
- School of Food and Pharmaceutical Engineering, Guiyang College, Guiyang, China
| | - Zeneng Cheng
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Mengmeng Xie
- Research Institute of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|