1
|
Córdova-Oriz I, Polonio AM, Cuadrado-Torroglosa I, Chico-Sordo L, Medrano M, García-Velasco JA, Varela E. Chromosome ends and the theory of marginotomy: implications for reproduction. Biogerontology 2024; 25:227-248. [PMID: 37943366 DOI: 10.1007/s10522-023-10071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
2
|
Yin L, Jiang N, Li T, Zhang Y, Yuan S. Telomeric function and regulation during male meiosis in mice and humans. Andrology 2024. [PMID: 38511802 DOI: 10.1111/andr.13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Telomeres are unique structures situated at the ends of chromosomes. Preserving the structure and function of telomeres is essential for maintaining genomic stability and promoting genetic diversity during male meiosis in mammals. MATERIAL-METHODS This review compiled recent literature on the function and regulation of telomeres during male meiosis in both mice and humans, and also highlighted the critical roles of telomeres in reproductive biology and medicine. RESULTS-DISCUSSION Various structures, consisting of the LINC complex (SUN-KASH), SPDYA-CDK2, TTM trimer (TERB1-TERB2-MAJIN), and shelterin, are critical in controlling telomeric activities, such as nuclear envelope attachment and bouquet formation. Other than telomere-related proteins, cohesins and genes responsible for regulating telomere function are also highlighted, though the exact mechanism remains unclear. The gene-mutant mouse models with meiotic defects directly reveal the essential roles of telomeres in male meiosis. Recently reported mutant genes associated with telomere activity in clinical practice have also been illustrated in detail. CONCLUSIONS Proper regulation of telomere activities is essential for male meiosis progression in mice and humans.
Collapse
Affiliation(s)
- Lisha Yin
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Jiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, China
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Animal Center, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Harmak H, Redouane S, Charoute H, Aniq Filali O, Barakat A, Rouba H. In silico exploration and molecular dynamics of deleterious SNPs on the human TERF1 protein triggering male infertility. J Biomol Struct Dyn 2023; 41:14665-14688. [PMID: 36995171 DOI: 10.1080/07391102.2023.2193995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/18/2023] [Indexed: 03/31/2023]
Abstract
By limiting chromosome erosion and end-to-end fusions, telomere integrity is critical for chromosome stability and cell survival. During mitotic cycles or due to environmental stresses, telomeres become progressively shorter and dysfunctional, thus triggering cellular senescence, genomic instability and cell death. To avoid such consequences, the telomerase action, as well as the Shelterin and CST complexes, assure the telomere's protection. Telomeric repeat binding factor 1 (TERF1), which is one of the primary components of the Shelterin complex, binds directly to the telomere and controls its length and function by regulating the telomerase activity. Several reports about TERF1 gene variations have been associated with different diseases, and some of them have linked these variations to male infertility. Hence, this paper can be advantageous to investigate the association between the missense variants of the TERF1 gene and the susceptibility to male infertility. The stepwise prediction of SNPs pathogenicity followed in this study was based on stability and conservation analysis, post-translational modification, secondary structure, functional interaction prediction, binding energy evaluation and finally molecular dynamic simulation. Prediction matching among the tools revealed that out of 18 SNPs, only four (rs1486407144, rs1259659354, rs1257022048 and rs1320180267) were predicted as the most damaging and highly deleterious SNPs affecting the TERF1 protein and its molecular dynamics when interacting with the TERB1 protein by influencing the function, structural stability, flexibility and compaction of the overall complex. Interestingly, these polymorphisms should be considered during genetic screening so they can be used effectively as genetic biomarkers for male infertility diagnosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Houda Harmak
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Salaheddine Redouane
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hicham Charoute
- Research Unit of Epidemiology, Biostatistics and Bioinformatics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ouafaa Aniq Filali
- Laboratory of Physiopathology, Molecular Genetics and Biotechnology, Department of Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hassan Rouba
- Laboratory of Genomics and Human Genetics, 1, Place Louis Pasteur, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
4
|
Balmori C, Cordova-Oriz I, De Alba G, Medrano M, Jiménez-Tormo L, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Effects of age and oligosthenozoospermia on telomeres of sperm and blood cells. Reprod Biomed Online 2021; 44:1090-1100. [DOI: 10.1016/j.rbmo.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
|
5
|
Gentiluomo M, Luddi A, Cingolani A, Fornili M, Governini L, Lucenteforte E, Baglietto L, Piomboni P, Campa D. Telomere Length and Male Fertility. Int J Mol Sci 2021; 22:ijms22083959. [PMID: 33921254 PMCID: PMC8069448 DOI: 10.3390/ijms22083959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Over the past decade, telomeres have attracted increasing attention due to the role they play in human fertility. However, conflicting results have been reported on the possible association between sperm telomere length (STL) and leukocyte telomere length (LTL) and the quality of the sperm parameters. The aim of this study was to run a comprehensive study to investigate the role of STL and LTL in male spermatogenesis and infertility. Moreover, the association between the sperm parameters and 11 candidate single nucleotide polymorphisms (SNPs), identified in the literature for their association with telomere length (TL), was investigated. We observed no associations between sperm parameters and STL nor LTL. For the individual SNPs, we observed five statistically significant associations with sperm parameters: considering a p < 0.05. Namely, ACYP2˗rs11125529 and decreased sperm motility (p = 0.03); PXK˗rs6772228 with a lower sperm count (p = 0.02); NAF1˗rs7675998 with increased probability of having abnormal acrosomes (p = 0.03) and abnormal flagellum (p = 0.04); ZNF208˗rs8105767 and reduction of sperms with normal heads (p = 0.009). This study suggests a moderate involvement of telomere length in male fertility; however, in our analyses four SNPs were weakly associated with sperm variables, suggesting the SNPs to be pleiotropic and involved in other regulatory mechanisms independent of telomere homeostasis, but involved in the spermatogenic process.
Collapse
Affiliation(s)
- Manuel Gentiluomo
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Annapaola Cingolani
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.F.); (E.L.); (L.B.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (A.L.); (L.G.)
- Correspondence: ; Tel.: +39-057-758-6632
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.G.); (A.C.); (D.C.)
| |
Collapse
|
6
|
Drevet JR, Aitken RJ. Oxidation of Sperm Nucleus in Mammals: A Physiological Necessity to Some Extent with Adverse Impacts on Oocyte and Offspring. Antioxidants (Basel) 2020; 9:E95. [PMID: 31979208 PMCID: PMC7070651 DOI: 10.3390/antiox9020095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Sperm cells have long been known to be good producers of reactive oxygen species, while they are also known to be particularly sensitive to oxidative damage affecting their structures and functions. As with all organic cellular components, sperm nuclear components and, in particular, nucleic acids undergo oxidative alterations that have recently been shown to be commonly encountered in clinical practice. This review will attempt to provide an overview of this situation. After a brief coverage of the biological reasons why the sperm nucleus and associated DNA are sensitive to oxidative damage, a summary of the most recent results concerning the oxidation of sperm DNA in animal and human models will be presented. The study will then attempt to cover the possible consequences of sperm nuclear oxidation on male fertility and beyond.
Collapse
Affiliation(s)
- Joël R. Drevet
- Faculty of Medicine, GReD Institute, INSERM U1103—CNRS UMR6293—Université Clermont Auvergne, CRBC building, 28 place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Robert John Aitken
- School of Environmental and Life Sciences, Priority Research Centre for Reproductive Sciences, The University of Newcastle, Callaghan, Newcastle 2308, Australia;
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, Newcastle 2308, Australia
- Medical Genetics, Hunter Medical Research Institute, New Lambton Heights, 13 2305 Newcastle, Australia
| |
Collapse
|
7
|
Lara-Cerrillo S, Gual-Frau J, Benet J, Abad C, Prats J, Amengual MJ, Ribas-Maynou J, García-Peiró A. Microsurgical varicocelectomy effect on sperm telomere length, DNA fragmentation and seminal parameters. HUM FERTIL 2020; 25:135-141. [PMID: 31916507 DOI: 10.1080/14647273.2019.1711204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Varicocele is one of the main causes of male infertility and microsurgical varicocelectomy (MV) seems to be the best procedure for its repair and to reduce testicular oxidative stress (ROS). As ROS causes guanine modifications, we postulated that DNA damage could be more intense in telomeres due to their G-rich nature. We studied the effect of MV on sperm telomere length (TL), single- and double-strand DNA fragmentation (ssSDF and dsSDF) and seminal parameters. Sperm telomeres from 12 fertile donors and 20 varicocele patients before and nine months after MV were labelled using FITC-PNA qFISH (a new method to obtain absolute TL from relative fluorescence intensity using FITC-fluorescent spheres). Both ssSDF and dsSDF were analysed using the alkaline and neutral Comet assays, respectively. The results showed that varicocele and MV had no effect on TL. Seminal parameters, ssSDF and dsSDF of varicocele patients were altered. Although these parameters improved after MV, values did not reach those seen in fertile donors. A good estimation of absolute TL was developed based on FITC-fluorescent spheres. The results showed that TL is not affected by varicocele or surgery. However, MV is able to partially reduce altered seminal parameters, ssSDF and dsSDF values in varicocele patients.
Collapse
Affiliation(s)
| | - Josep Gual-Frau
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Jordi Benet
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carlos Abad
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Juan Prats
- Servei d'Urologia, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - Universitat Autònoma de Barcelona, Sabadell, Spain
| | - María José Amengual
- Centre Diagnòstic UDIAT, Corporació Sanitària Parc Taulí, Institut Universitari Parc Taulí - UAB, Sabadell, Spain
| | - Jordi Ribas-Maynou
- Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | |
Collapse
|
8
|
Westerman R. Biomarkers for demographic research: sperm counts and other male infertility biomarkers. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2020; 65:73-87. [PMID: 32065536 DOI: 10.1080/19485565.2019.1706150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Some male infertility biomarkers are etiologically linked to idiopathic infertility in men, the direct cause of which often cannot be determined with conventional sperm count parameters. Open questions remain regarding the universal and generic infertility definitions that cover and combine the clinical, epidemiological, and demographic perspectives. The main effort in the application of these infertility biomarkers are accounted by more or less strict discrimination criteria. For male infertility, beyond classical sperm count assessments, the DNA fragmentation index (DFI) is an adequate biomarker. DFI strongly correlates with pregnancy rates and even strict discrimination criteria for infertility outcomes. Other common biomarkers are reactive oxygen species (ROS) and antisperm antibodies (ASAs), which can explain some biomedical infertility disorders within major constraints. More frequently applied in demographic research, telomere length component analysis is based on identifying the genetic impact of cellular longevity. Sperm telomere length is becoming established as a potential biomarker in infertility research. The aim of this review is to provide an overview of the current status and limitations to the application of novel biomarkers, including TEX101, for infertility research. The review also discusses potential options for the use of biomarkers in population-based studies.Abbreviations: ASAs: antisperm antibodies; DFI: DNA fragmentation index; DNA: deoxyribonucleic acid; ECM1: extracellular matrix protein 1; FSH: follicle stimulating hormone; HS: hypospermatogenesis: IVF: in vitro fertilization; LDHC: L-lactata dehydrogenase C chain; MA: maturation arrest; microTESE: microdissection testicular sperm extraction; NOA: nonobstructive azoospermia; NP: nonprogressive; OA: obstructive azoospermia; pH: potential Hyrogenii (pH-value); PR: progressive; PTGDS: prostaglandin D synthese; ROS: reactive oxygen species; SA: semen analysis; SCO: sertoli cell only; SCSA: sperm chromatin structure assay (SCSA); TL: telomere length; TESE: testicular sperm extraction; TEX101: a glycoprotein that belongs to Ly6/urokinase type plasminogen activator receptor-like protein (uPAR)(LU) superfamily, to be a germ-cell-specific molecular sperm extraction; TUNEL: terminal deoxnucleotidyl dispersion tranferase dUTP nick-end labeling; WHO: World Health Organization.
Collapse
Affiliation(s)
- Ronny Westerman
- Competence Center Mortality-Follow-Up, German National Cohort, Federal Institute for Population Research, Wiesbaden, Germany
| |
Collapse
|
9
|
Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet 2018; 35:1953-1968. [PMID: 30206748 PMCID: PMC6240539 DOI: 10.1007/s10815-018-1304-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Advancing maternal and paternal age leads to a decrease in fertility, and hence, many infertile couples opt for assisted reproductive technologies [ART] to achieve biological parenthood. One of the key determinants of achieving a live outcome of ART, embryo quality, depends on both the quality of the oocyte and sperm that have created the embryo. Several studies have explored the effect of oocyte parameters on embryo quality, but the effects of sperm quality on the embryo have not been comprehensively evaluated. METHOD In this review, we assess the effect of various genetic factors of paternal origin on the quality and development of the embryo. RESULTS The effects of sperm aneuploidy, sperm chromatin structure, deoxyribonucleic acid [DNA] fragmentation, role of protamines and histones, sperm epigenetic profile, and Y chromosome microdeletions were explored and found to negatively affect embryo quality. CONCLUSION We propose that careful assessment of spermatozoal parameters is essential to achieve embryo development and a healthy live birth. However, the heterogeneity in test results and the different approaches of assessing a single sperm parameter highlight the need for more research and the development of standardized protocols to assess the role of sperm factors affecting embryo quality.
Collapse
Affiliation(s)
- Stacy Colaco
- Molecular and Cellular Biology Laboratory, Indian Council of Medical Research-National Institute for Research in Reproductive Health, JM Street, Parel, Mumbai, 400012, India.
| | | |
Collapse
|