1
|
Stiles AR, Donti TR, Hall PL, Wilcox WR. Biomarker testing for lysosomal diseases: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2024:101242. [PMID: 39499245 DOI: 10.1016/j.gim.2024.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/07/2024] Open
Abstract
Measurement of lysosomal disease (LD) biomarkers can reveal valuable information about disease status. Lyso-globotriaosylceramide (lyso-Gb3), glucosylsphingosine (lyso-Gb1), galactosylsphingosine (psychosine), and glucose tetrasaccharide (Glca1-6Glca1-4Glca1-4Glc, Glc4) are biomarkers associated with Fabry, Gaucher, Krabbe, and Pompe disease, respectively. Clinical biomarker testing is performed to guide patient management, including monitoring disease progression and initiating treatment, and in diagnostic evaluations of either symptomatic patients or asymptomatic individuals with a positive family history or abnormal newborn screen. Biomarker analysis can be performed through independent analysis of a single analyte or as a multiplex assay measuring analytes for more than one disorder utilizing liquid chromatographic separation and tandem mass spectrometric detection. These guidelines were developed to provide technical standards for biomarker analysis, results interpretation, and results reporting, highlighting Fabry, Gaucher, Krabbe, and Pompe diseases as examples.
Collapse
Affiliation(s)
- Ashlee R Stiles
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | - Patricia L Hall
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - William R Wilcox
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
2
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
3
|
Stepien KM, Žnidar I, Kieć-Wilk B, Jones A, Castillo-García D, Abdelwahab M, Revel-Vilk S, Lineham E, Hughes D, Ramaswami U, Collin-Histed T. Transition of patients with Gaucher disease type 1 from pediatric to adult care: results from two international surveys of patients and health care professionals. Front Pediatr 2024; 12:1439236. [PMID: 39346636 PMCID: PMC11430091 DOI: 10.3389/fped.2024.1439236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/15/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Gaucher disease (GD) is a rare, autosomal recessive lysosomal storage disorder caused by a deficiency in the enzyme glucocerebrosidase. The most common subtype in Europe and the USA, type 1 (GD1), is characterized by fatigue, cytopenia, splenomegaly, hepatomegaly, bone disease, and rarely pulmonary disease. Increased life expectancy brought about by improved treatments has led to new challenges for adolescents and their transition to adult care. Efficient healthcare transition to adult care is essential to manage the long-term age-related complications of the disease. Methods This international study consisted of two online surveys: one survey for patients with GD1 and one survey for healthcare professionals (HCPs) involved in treatment of patients with GD1. The aims of this international, multi-center project were to evaluate the current transition process in various countries and to understand the challenges that both HCPs and patients experience. Results A total of 45 patients and 26 HCPs took part in the survey, representing 26 countries. Our data showed that a third (11/33) of patients were aware of transition clinics and most stated that the clinic involved patients with metabolic diseases or with GD. Seven patients attended a transition clinic, where most patients (5/7) received an explanation of the transition process. Approximately half of HCPs (46%; 12/26) had a transition clinic coordinator in their healthcare center, and 10 of HCPs had a transition clinic for patients with metabolic diseases in their healthcare center. HCPs reported that transition clinics were comprised of multi-disciplinary teams, with most patients over the age of 18 years old managed by hematology specialists. The main challenges of the transition process reported by HCPs included limited funding, lack of expertise and difficulty coordinating care amongst different specialties. Discussion Our study demonstrates the lack of a standardized process, the need to raise awareness of transition clinics amongst patients and the differences between the transition process in different countries. Both patients and HCPs expressed the need for a specialist individual responsible for transition, efficient coordination between pediatricians and adult specialists and for patient visits to the adult center prior to final transition of care.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal Organization, Northern Care Alliance NHS Foundation Trust, Salford, United Kingdom
| | - Irena Žnidar
- International Gaucher Alliance (IGA), London, United Kingdom
| | - Beata Kieć-Wilk
- Metabolic Diseases Office, Krakow Specialist Hospital St. John Paul II, Krakow, Poland
- Unit of Rare Metabolic Diseases, Medical College, Jagiellonian University, Krakow, Poland
| | - Angel Jones
- International Gaucher Alliance (IGA), London, United Kingdom
| | - Daniela Castillo-García
- Department of Pediatrics, Hospital Infantil de México Federico Gómez Instituto Nacional de Salud, México City, México
| | - Magy Abdelwahab
- Pediatric Hematology/BMT Unit and Social and Preventive Center KasrAlainy Hospital, Faculty of Medicine, Cairo University Pediatric Hospital, Cairo, Egypt
| | - Shoshana Revel-Vilk
- Gaucher Unit, Pediatric Hematology/Oncology Unit, the Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ella Lineham
- Rare Disease Research Partners (RDRP), MPS House, Amersham, United Kingdom
| | - Derralynn Hughes
- Lysosomal Disorders Unit, University College London and Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Department of Infection, Immunity and Rare Diseases, Royal Free London NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
4
|
Bean K, Jones SA, Chakrapani A, Vijay S, Wu T, Church H, Chanson C, Olaye A, Miller B, Jensen I, Pang F. Exploring the Cost-Effectiveness of Newborn Screening for Metachromatic Leukodystrophy (MLD) in the UK. Int J Neonatal Screen 2024; 10:45. [PMID: 39051401 PMCID: PMC11270184 DOI: 10.3390/ijns10030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Metachromatic leukodystrophy (MLD) is a fatal inherited lysosomal storage disease that can be detected through newborn bloodspot screening. The feasibility of the screening assay and the clinical rationale for screening for MLD have been previously demonstrated, so the aim of this study is to determine whether the addition of screening for MLD to the routine newborn screening program in the UK is a cost-effective use of National Health Service (NHS) resources. A health economic analysis from the perspective of the NHS and Personal Social Services was developed based on a decision-tree framework for each MLD subtype using long-term outcomes derived from a previously presented partitioned survival and Markov economic model. Modelling inputs for parameters related to epidemiology, test characteristics, screening and treatment costs were based on data from three major UK specialist MLD hospitals, structured expert opinion and published literature. Lifetime costs and quality-adjusted life years (QALYs) were discounted at 1.5% to account for time preference. Uncertainty associated with the parameter inputs was explored using sensitivity analyses. This health economic analysis demonstrates that newborn screening for MLD is a cost-effective use of NHS resources using a willingness-to-pay threshold appropriate to the severity of the disease; and supports the inclusion of MLD into the routine newborn screening programme in the UK.
Collapse
Affiliation(s)
- Karen Bean
- Orchard Therapeutics, London W6 8PW, UK; (C.C.); (A.O.); (F.P.)
| | - Simon A. Jones
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.A.J.)
| | | | - Suresh Vijay
- Birmingham Women’s and Children NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Teresa Wu
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.A.J.)
| | - Heather Church
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.A.J.)
| | | | - Andrew Olaye
- Orchard Therapeutics, London W6 8PW, UK; (C.C.); (A.O.); (F.P.)
| | | | - Ivar Jensen
- Precision AQ, Boston, MA 02108, USA; (B.M.); (I.J.)
| | - Francis Pang
- Orchard Therapeutics, London W6 8PW, UK; (C.C.); (A.O.); (F.P.)
| |
Collapse
|
5
|
Prencipe F, Barzan C, Savian C, Spalluto G, Carosati E, De Amici M, Mosconi G, Gianferrara T, Federico S, Da Ros T. Gaucher Disease: A Glance from a Medicinal Chemistry Perspective. ChemMedChem 2024; 19:e202300641. [PMID: 38329692 DOI: 10.1002/cmdc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.
Collapse
Affiliation(s)
- Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Barzan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Molecular Genetics Institute, CNR Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Savian
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milano Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Giorgio Mosconi
- Fidia Farmaceutici Via Ponte della Fabbrica 3/A, 35021, Abano Terme, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
6
|
Chang S, Zhan X, Liu Y, Song H, Gong Z, Han L, Maegawa GHB, Gu X, Zhang H. Newborn Screening for 6 Lysosomal Storage Disorders in China. JAMA Netw Open 2024; 7:e2410754. [PMID: 38739391 PMCID: PMC11091758 DOI: 10.1001/jamanetworkopen.2024.10754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Importance Newborn screening (NBS) for lysosomal storage disorders (LSDs) is becoming an increasing concern in public health. However, the birth prevalence of these disorders is rarely reported in the Chinese population, and subclinical forms of diseases among patients identified by NBS have not been evaluated. Objective To evaluate the birth prevalence of the 6 LSDs in the Shanghai population and determine subclinical forms based on clinical, biochemical, and genetic characteristics. Design, Setting, and Participants This cohort study included 50 108 newborns recruited from 41 hospitals in Shanghai between January and December 2021 who were screened for 6 LSDs using tandem mass spectrometry (MS/MS). Participants with screen-positive results underwent molecular and biochemical tests and clinical assessments. Data were analyzed from January 2021 through October 2022. Exposures All participants were screened for Gaucher, acid sphingomyelinase deficiency (ASMD), Krabbe, mucopolysaccharidosis type I, Fabry, and Pompe diseases using dried blood spots. Main Outcomes and Measures Primary outcomes were the birth prevalence and subclinical forms of the 6 LSDs in the Shanghai population. Disease biomarker measurements, genetic testing, and clinical analysis were used to assess clinical forms of LSDs screened. Results Among 50 108 newborns (26 036 male [52.0%]; mean [SD] gestational age, 38.8 [1.6] weeks), the mean (SD) birth weight was 3257 (487) g. The MS/MS-based NBS identified 353 newborns who were positive. Of these, 27 newborns (7.7%) were diagnosed with 1 of 6 LSDs screened, including 2 newborns with Gaucher, 5 newborns with ASMD, 9 newborns with Krabbe, 8 newborns with Fabry, and 3 newborns with Pompe disease. The combined birth prevalence of LSDs in Shanghai was 1 diagnosis in 1856 live births, with Krabbe disease the most common (1 diagnosis/5568 live births), followed by Fabry disease (1 diagnosis/6264 live births), and ASMD (1 diagnosis/10 022 live births). Biochemical, molecular, and clinical analysis showed that early-onset clinical forms accounted for 3 newborns with positive results (11.1%), while later-onset forms represented nearly 90% of diagnoses (24 newborns [88.9%]). Conclusions and Relevance In this study, the combined birth prevalence of the 6 LSDs in Shanghai was remarkably high. MS/MS-based newborn screening, combined with biochemical and molecular genetic analysis, successfully identified and characterized newborns who were screen-positive, which may assist with parental counseling and management decisions.
Collapse
Affiliation(s)
- Siyu Chang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchao Liu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanlei Song
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zizhen Gong
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H. B. Maegawa
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
- Columbia University Medical Center, New York, New York
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetics, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Sun Y, Guan XW, Wang YY, Hong DY, Zhang ZL, Li YH, Yang PY, Wang X, Jiang T, Chi X. Newborn genetic screening for Fabry disease: Insights from a retrospective analysis in Nanjing, China. Clin Chim Acta 2024; 557:117889. [PMID: 38531466 DOI: 10.1016/j.cca.2024.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
Fabry disease (FD), an X-linked disorder resulting from dysfunction of α-galactosidase A, can result in significant complications. Early intervention yields better outcomes, but misdiagnosis or delayed diagnosis is common, impacting prognosis. Thus, early detection is crucial in the clinical diagnosis and treatment of FD. While newborn screening for FD has been implemented in certain regions, challenges persist in enzyme activity detection techniques, particularly for female and late-onset patients. Further exploration of improved screening strategies is warranted. This study retrospectively analyzed genetic screening results for pathogenic GLA variants in 17,171 newborns. The results indicated an estimated incidence of FD in the Nanjing region of China of approximately 1 in 1321. The most prevalent pathogenic variant among potential FD patients was c.640-801G > A (46.15 %). Furthermore, the residual enzyme activity of the pathogenic variant c.911G > C was marginally higher than that of other variants, and suggesting that genetic screening may be more effective in identifying potential female and late-onset patients compared to enzyme activity testing. This research offers initial insights into the effectiveness of GLA genetic screening and serves as a reference for early diagnosis, treatment, and genetic counseling in FD.
Collapse
Affiliation(s)
- Yun Sun
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xian-Wei Guan
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yan-Yun Wang
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Dong-Yang Hong
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Zhi-Lei Zhang
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ya-Hong Li
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Pei-Ying Yang
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Xin Wang
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Tao Jiang
- Genetic Medicine Center, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
| |
Collapse
|
8
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
9
|
Mir YR, Agrahari AK, Hassan A, Choudhary A, Asthana S, Taneja AK, Nawaz S, Ilyas M, Scotti C, Kuchay RAH. Identification and structural characterization of a pathogenic ARSA missense variant in two consanguineous families from Jammu and Kashmir (India) with late infantile metachromatic leukodystrophy. Mol Biol Rep 2023; 51:30. [PMID: 38153581 DOI: 10.1007/s11033-023-09072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder caused by a deficiency of Arylsulfatase A (ARSA) enzyme activity. Its clinical manifestations include progressive motor and cognitive decline. ARSA gene mutations are frequent in MLD. METHODS AND RESULTS In the present study, whole exome sequencing (WES) was employed to decipher the genetic cause of motor and cognitive decline in proband's of two consanguineous families from J&K (India). Clinical investigations using radiological and biochemical analysis revealed MLD-like features. WES confirmed a pathogenic variant in the ARSA gene. Molecular simulation dynamics was applied for structural characterization of the variant. CONCLUSION We report the identification of a pathogenic missense variant (c.1174 C > T; p.Arg390Trp) in the ARSA gene in two cases of late infantile MLD from consanguineous families in Jammu and Kashmir, India. Our study utilized genetic analysis and molecular dynamics simulations to identify and investigate the structural consequences of this mutation. The molecular dynamics simulations revealed significant alterations in the structural dynamics, residue interactions, and stability of the ARSA protein harbouring the p.Arg390Trp mutation. These findings provide valuable insights into the molecular mechanisms underlying the pathogenicity of this variant in MLD.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, 185234, India
| | - Ashish Kumar Agrahari
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Asima Hassan
- Department of Ophthalmology GMC Srinagar, Srinagar, J&K, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Atul Kumar Taneja
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shah Nawaz
- Department of Pediatrics, GMC Jammu, Jammu, J&K, India
| | | | - Claudia Scotti
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| | - Raja A H Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, J&K, 185234, India.
| |
Collapse
|
10
|
Gragnaniello V, Cazzorla C, Gueraldi D, Puma A, Loro C, Porcù E, Stornaiuolo M, Miglioranza P, Salviati L, Burlina AP, Burlina AB. Light and Shadows in Newborn Screening for Lysosomal Storage Disorders: Eight Years of Experience in Northeast Italy. Int J Neonatal Screen 2023; 10:3. [PMID: 38248631 PMCID: PMC10801488 DOI: 10.3390/ijns10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In the last two decades, the development of high-throughput diagnostic methods and the availability of effective treatments have increased the interest in newborn screening for lysosomal storage disorders. However, long-term follow-up experience is needed to clearly identify risks, benefits and challenges. We report our 8-year experience of screening and follow-up on about 250,000 neonates screened for four lysosomal storage diseases (Pompe disease, mucopolysaccharidosis type I, Fabry disease, Gaucher disease), using the enzyme activity assay by tandem mass spectrometry, and biomarker quantification as a second-tier test. Among the 126 positive newborns (0.051%), 51 infants were confirmed as affected (positive predictive value 40%), with an overall incidence of 1:4874. Of these, three patients with infantile-onset Pompe disease, two with neonatal-onset Gaucher disease and four with mucopolysaccharidosis type I were immediately treated. Furthermore, another four Gaucher disease patients needed treatment in the first years of life. Our study demonstrates the feasibility and effectiveness of newborn screening for lysosomal storage diseases. Early diagnosis and treatment allow the achievement of better patient outcomes. Challenges such as false-positive rates, the diagnosis of variants of uncertain significance or late-onset forms and the lack of treatment for neuronopathic forms, should be addressed.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
- Division of Inherited Metabolic Diseases, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Christian Loro
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Paolo Miglioranza
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy;
| | | | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, 35128 Padua, Italy; (V.G.); (C.C.); (D.G.); (A.P.); (C.L.); (E.P.); (M.S.)
- Division of Inherited Metabolic Diseases, Department of Women’s and Children’s Health, University of Padua, 35128 Padua, Italy
| |
Collapse
|
11
|
Wilson A, Chiorean A, Aguiar M, Sekulic D, Pavlick P, Shah N, Sniderman King L, Génin M, Rollot M, Blanchon M, Gosset S, Montmerle M, Molony C, Dumitriu A. Development of a rare disease algorithm to identify persons at risk of Gaucher disease using electronic health records in the United States. Orphanet J Rare Dis 2023; 18:280. [PMID: 37689674 PMCID: PMC10492341 DOI: 10.1186/s13023-023-02868-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/23/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Early diagnosis of Gaucher disease (GD) allows for disease-specific treatment before significant symptoms arise, preventing/delaying onset of complications. Yet, many endure years-long diagnostic odysseys. We report the development of a machine learning algorithm to identify patients with GD from electronic health records. METHODS We utilized Optum's de-identified Integrated Claims-Clinical dataset (2007-2019) for feature engineering and algorithm training/testing, based on clinical characteristics of GD. Two algorithms were selected: one based on age of feature occurrence (age-based), and one based on occurrence of features (prevalence-based). Performance was compared with an adaptation of the available clinical diagnostic algorithm for identifying patients with diagnosed GD. Undiagnosed patients highly-ranked by the algorithms were compared with diagnosed GD patients. RESULTS Splenomegaly was the most important predictor for diagnosed GD with both algorithms, followed by geographical location (northeast USA), thrombocytopenia, osteonecrosis, bone density disorders, and bone pain. Overall, 1204 and 2862 patients, respectively, would need to be assessed with the age- and prevalence-based algorithms, compared with 20,743 with the clinical diagnostic algorithm, to identify 28 patients with diagnosed GD in the integrated dataset. Undiagnosed patients highly-ranked by the algorithms had similar clinical manifestations as diagnosed GD patients. CONCLUSIONS The age-based algorithm identified younger patients, while the prevalence-based identified patients with advanced clinical manifestations. Their combined use better captures GD heterogeneity. The two algorithms were about 10-20-fold more efficient at identifying GD patients than the clinical diagnostic algorithm. Application of these algorithms could shorten diagnostic delay by identifying undiagnosed GD patients.
Collapse
Affiliation(s)
- Amanda Wilson
- Health Economics and Value Assessment, Sanofi, Cambridge, MA USA
| | | | - Mario Aguiar
- Global Medical Affairs, RD Hematology, Sanofi, Cambridge, MA USA
| | - Davorka Sekulic
- Global Medical Affairs, RD Hematology, Sanofi, Cambridge, MA USA
| | | | - Neha Shah
- Medical Diagnostics, Sanofi, Cambridge, MA USA
| | | | | | | | | | | | | | | | - Alexandra Dumitriu
- Global Medical Affairs, Medical Evidence Generation, Sanofi, Cambridge, MA USA
| |
Collapse
|
12
|
Gómez-Cebrián N, Gras-Colomer E, Poveda Andrés JL, Pineda-Lucena A, Puchades-Carrasco L. Omics-Based Approaches for the Characterization of Pompe Disease Metabolic Phenotypes. BIOLOGY 2023; 12:1159. [PMID: 37759559 PMCID: PMC10525434 DOI: 10.3390/biology12091159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, inherited disorders of metabolism, characterized by defects in lysosomal enzymes, accessory proteins, membrane transporters or trafficking proteins. Pompe disease (PD) is produced by mutations in the acid alpha-glucosidase (GAA) lysosomal enzyme. This enzymatic deficiency leads to the aberrant accumulation of glycogen in the lysosome. The onset of symptoms, including a variety of neurological and multiple-organ pathologies, can range from birth to adulthood, and disease severity can vary between individuals. Although very significant advances related to the development of new treatments, and also to the improvement of newborn screening programs and tools for a more accurate diagnosis and follow-up of patients, have occurred over recent years, there exists an unmet need for further understanding the molecular mechanisms underlying the progression of the disease. Also, the reason why currently available treatments lose effectiveness over time in some patients is not completely understood. In this scenario, characterization of the metabolic phenotype is a valuable approach to gain insights into the global impact of lysosomal dysfunction, and its potential correlation with clinical progression and response to therapies. These approaches represent a discovery tool for investigating disease-induced modifications in the complete metabolic profile, including large numbers of metabolites that are simultaneously analyzed, enabling the identification of novel potential biomarkers associated with these conditions. This review aims to highlight the most relevant findings of recently published omics-based studies with a particular focus on describing the clinical potential of the specific metabolic phenotypes associated to different subgroups of PD patients.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Elena Gras-Colomer
- Pharmacy Department, Hospital Manises of Valencia, 46940 Valencia, Spain
| | | | - Antonio Pineda-Lucena
- Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain
| | | |
Collapse
|
13
|
Gragnaniello V, Burlina AP, Commone A, Gueraldi D, Puma A, Porcù E, Stornaiuolo M, Cazzorla C, Burlina AB. Newborn Screening for Fabry Disease: Current Status of Knowledge. Int J Neonatal Screen 2023; 9:31. [PMID: 37367212 DOI: 10.3390/ijns9020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Fabry disease is an X-linked progressive lysosomal disorder, due to α-galactosidase A deficiency. Patients with a classic phenotype usually present in childhood as a multisystemic disease. Patients presenting with the later onset subtypes have cardiac, renal and neurological involvements in adulthood. Unfortunately, the diagnosis is often delayed until the organ damage is already irreversibly severe, making specific treatments less efficacious. For this reason, in the last two decades, newborn screening has been implemented to allow early diagnosis and treatment. This became possible with the application of the standard enzymology fluorometric method to dried blood spots. Then, high-throughput multiplexable assays, such as digital microfluidics and tandem mass spectrometry, were developed. Recently DNA-based methods have been applied to newborn screening in some countries. Using these methods, several newborn screening pilot studies and programs have been implemented worldwide. However, several concerns persist, and newborn screening for Fabry disease is still not universally accepted. In particular, enzyme-based methods miss a relevant number of affected females. Moreover, ethical issues are due to the large number of infants with later onset forms or variants of uncertain significance. Long term follow-up of individuals detected by newborn screening will improve our knowledge about the natural history of the disease, the phenotype prediction and the patients' management, allowing a better evaluation of risks and benefits of the newborn screening for Fabry disease.
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | | | - Anna Commone
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Andrea Puma
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Elena Porcù
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Maria Stornaiuolo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| | - Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, 35128 Padua, Italy
| |
Collapse
|
14
|
Akgun A, Gokcay G, Mungan NO, Sivri HS, Tezer H, Zeybek CA, Ezgu F. Expert-opinion-based guidance for the care of children with lysosomal storage diseases during the COVID-19 pandemic: An experience-based Turkey perspective. Front Public Health 2023; 11:1092895. [PMID: 36794069 PMCID: PMC9922761 DOI: 10.3389/fpubh.2023.1092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
This expert-opinion-based document was prepared by a group of specialists in pediatric inherited metabolic diseases and infectious diseases including administrative board members of Turkish Society for Pediatric Nutrition and Metabolism to provide guidance for the care of children with lysosomal storage disorders (LSDs) during the COVID-19 pandemic in Turkey. The experts reached consensus on key areas of focus regarding COVID-19-based risk status in relation to intersecting immune-inflammatory mechanisms and disease patterns in children with LSDs, diagnostic virus testing, particularly preventive measures and priorities during the pandemic, routine screening and diagnostic interventions for LSDs, psychological and socioeconomic impact of confinement measures and quarantines and optimal practice patterns in managing LSDs and/or COVID-19. The participating experts agreed on the intersecting characteristics of immune-inflammatory mechanisms, end-organ damage and prognostic biomarkers in LSD and COVID-19 populations, emphasizing the likelihood of enhanced clinical care when their interaction is clarified via further studies addressing certain aspects related to immunity, lysosomal dysfunction and disease pathogenesis. In the context of the current global COVID-19 pandemic, this expert-opinion-based document provides guidance for the care of children with LSDs during the COVID-19 pandemic based on the recent experience in Turkey.
Collapse
Affiliation(s)
- Abdurrahman Akgun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulden Gokcay
- Division of Nutrition and Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Neslihan Onenli Mungan
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Tezer
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cigdem Aktuglu Zeybek
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fatih Ezgu
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Almontashiri NAM. Commentary on A Patient with Coarse Facial Features and Molecular Odyssey: Lessons Learned and Best Practice. Clin Chem 2023; 69:21. [PMID: 36598550 DOI: 10.1093/clinchem/hvac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia.,Faculty of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| |
Collapse
|
16
|
Carnicer-Cáceres C, Villena-Ortiz Y, Castillo-Ribelles L, Barquín-Del-Pino R, Camprodon-Gomez M, Felipe-Rucián A, Moreno-Martínez D, Lucas-Del-Pozo S, Hernández-Vara J, García-Serra A, Tigri-Santiña A, Moltó-Abad M, Agraz-Pamplona I, Rodriguez-Palomares JF, Limeres-Freire J, Macaya-Font M, Rodríguez-Sureda V, Miguel LDD, Del-Toro-Riera M, Pintos-Morell G, Arranz-Amo JA. Influence of initial clinical suspicion on the diagnostic yield of laboratory enzymatic testing in lysosomal storage disorders. Experience from a multispecialty hospital. Blood Cells Mol Dis 2023; 98:102704. [PMID: 36265282 DOI: 10.1016/j.bcmd.2022.102704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022]
Abstract
Lysosomal storage disorders (LSD) are a group of inherited metabolic diseases mainly caused by a deficiency of lysosomal hydrolases, resulting in a gradual accumulation of non-degraded substrates in different tissues causing the characteristic clinical manifestations of such disorders. Confirmatory tests of suspected LSD individuals include enzymatic and genetic testing. A well-oriented clinical suspicion can improve the cost-effectiveness of confirmatory tests and reduce the time expended to achieve the diagnosis. Thus, this work aims to retrospectively study the influence of clinical orientation on the diagnostic yield of enzymatic tests in LSD by retrieving clinical, biochemical, and genetic data obtained from subjects with suspicion of LSD. Our results suggest that the clinical manifestations at the time of diagnosis and the initial clinical suspicion can have a great impact on the diagnostic yield of enzymatic tests, and that clinical orientation performed in specialized clinical departments can contribute to improve it. In addition, the analysis of enzymatic tests as the first step in the diagnostic algorithm can correctly guide subsequent confirmatory genetic tests, in turn increasing their diagnostic yield. In summary, our results suggest that initial clinical suspicion plays a crucial role on the diagnostic yield of confirmatory enzymatic tests in LSD.
Collapse
Affiliation(s)
- Clara Carnicer-Cáceres
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Yolanda Villena-Ortiz
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Laura Castillo-Ribelles
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Raquel Barquín-Del-Pino
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Maria Camprodon-Gomez
- Department of Internal Medicine, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Ana Felipe-Rucián
- Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - David Moreno-Martínez
- Department of Internal Medicine, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Sara Lucas-Del-Pozo
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Neurology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jorge Hernández-Vara
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Neurology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Anna García-Serra
- Neurodegenerative Diseases Laboratory, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Ariadna Tigri-Santiña
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Marc Moltó-Abad
- Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain.
| | - Irene Agraz-Pamplona
- Department of Nephrology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Jose F Rodriguez-Palomares
- Department of Cardiology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Javier Limeres-Freire
- Department of Cardiology, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Marc Macaya-Font
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Victor Rodríguez-Sureda
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Biochemistry and Molecular Biology Research Centre for Nanomedicine, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | - Lucy Dougherty-De Miguel
- Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - Mireia Del-Toro-Riera
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Pediatric Neurology, Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, 08035 Barcelona, Spain.
| | - Guillem Pintos-Morell
- Unit of Hereditary Metabolic Disorders, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Functional Validation & Preclinical Research, Drug Delivery & Targeting Group, CIBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain.
| | - Jose Antonio Arranz-Amo
- Laboratory of Inborn Errors of Metabolism, Laboratoris Clínics, Vall d'Hebron Barcelona Hospital Campus, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| |
Collapse
|
17
|
Ida H, Watanabe Y, Sagara R, Inoue Y, Fernandez J. An observational study to investigate the relationship between plasma glucosylsphingosine (lyso-Gb1) concentration and treatment outcomes of patients with Gaucher disease in Japan. Orphanet J Rare Dis 2022; 17:401. [PMID: 36329499 PMCID: PMC9635088 DOI: 10.1186/s13023-022-02549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Gaucher disease (GD) is an autosomal recessive disease caused by GBA1 mutations resulting in glucosylceramide accumulation in macrophages. GD is characterized by hepatosplenomegaly, anemia, thrombocytopenia, bone complications, and neurological complications. Glucosylsphingosine (lyso-Gb1), a deacylated form of glucosylceramide, has been identified as a promising biomarker for the diagnosis and treatment response in GD. The aim of this study was to examine the relationship between plasma lyso-Gb1 and therapeutic goals for GD (improvements in hepatomegaly, splenomegaly, anemia, thrombocytopenia, bone pain, and bone crisis), as well as disease type and GBA1 mutation type, in Japanese patients with GD receiving velaglucerase alfa, an enzyme replacement therapy (ERT). Furthermore, this study compared the plasma lyso-Gb1 concentration observed in Japanese patients included in this study with that observed in a previous non-Japanese clinical study. RESULTS This non-interventional, open-label, multicenter observational cohort study (October 2020 to March 2021) included a total of 20 patients (of any age) with GD (type 1: n = 8; type 2: n = 9; type 3: n = 3) treated with velaglucerase alfa for ≥ 3 months. Median (minimum-maximum) duration of velaglucerase alfa treatment was 49.5 (3-107) months. A total of 14 (70.0%) patients achieved all therapeutic goals (i.e., 100% achievement; improvements in hepatomegaly, splenomegaly, anemia, thrombocytopenia, bone pain, and bone crisis). Overall, median (minimum-maximum) lyso-Gb1 concentration was 24.3 (2.1-150) ng/mL. Although not statistically significant, numerically lower plasma lyso-Gb1 concentrations were observed in patients with 100% achievement compared with those without; no statistically significant difference in plasma lyso-Gb1 concentration was observed between patients with different disease type or mutation type. Furthermore, lyso-Gb1 concentrations observed in Japanese patients were numerically lower than that observed in a previous study of non-Japanese patients with GD receiving ERT. CONCLUSIONS In this study, high achievement rates of therapeutic goals with low lyso-Gb1 concentration were observed, demonstrating a correlation between therapeutic goals and lower plasma lyso-Gb1 concentration in Japanese patients with GD treated with velaglucerase alfa. This study further suggests that plasma lyso-Gb1 concentration may be a useful biomarker for treatment response in patients with GD.
Collapse
Affiliation(s)
- Hiroyuki Ida
- grid.470100.20000 0004 1756 9754The Jikei University Hospital, Tokyo, Japan
| | - Yuko Watanabe
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Rieko Sagara
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Yoichi Inoue
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| | - Jovelle Fernandez
- grid.419841.10000 0001 0673 6017Japan Medical Office, Takeda Pharmaceutical Company Limited, 1-1, Nihonbashi-Honcho 2-Chome, Chuo-Ku, Tokyo, 103-8668 Japan
| |
Collapse
|
18
|
Gragnaniello V, Pijnappel PW, Burlina AP, In 't Groen SL, Gueraldi D, Cazzorla C, Maines E, Polo G, Salviati L, Di Salvo G, Burlina AB. Newborn screening for Pompe disease in Italy: Long-term results and future challenges. Mol Genet Metab Rep 2022; 33:100929. [PMID: 36310651 PMCID: PMC9597184 DOI: 10.1016/j.ymgmr.2022.100929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Pompe disease (PD) is a progressive neuromuscular disorder caused by a lysosomal acid α-glucosidase (GAA) deficiency. Enzymatic replacement therapy is available, but early diagnosis by newborn screening (NBS) is essential for early treatment and better outcomes, especially with more severe forms. We present results from 7 years of NBS for PD and the management of infantile-onset (IOPD) and late-onset (LOPD) patients, during which we sought candidate predictive parameters of phenotype severity at baseline and during follow-up. We used a tandem mass spectrometry assay for α-glucosidase activity to screen 206,741 newborns and identified 39 positive neonates (0.019%). Eleven had two pathogenic variants of the GAA gene (3 IOPD, 8 LOPD); six carried variants of uncertain significance (VUS). IOPD patients were treated promptly and had good outcomes. LOPD and infants with VUS were followed; all were asymptomatic at the last visit (mean age 3.4 years, range 0.5–5.5). Urinary glucose tetrasaccharide was a useful and biomarker for rapidly differentiating IOPD from LOPD and monitoring response to therapy during follow-up. Our study, the largest reported to date in Europe, presents data from longstanding NBS for PD, revealing an incidence in North East Italy of 1/18,795 (IOPD 1/68,914; LOPD 1/25,843), and the absence of mortality in IOPD treated from birth. In LOPD, rigorous long-term follow-up is needed to evaluate the best time to start therapy. The high pseudodeficiency frequency, ethical issues with early LOPD diagnosis, and difficulty predicting phenotypes based on biochemical parameters and genotypes, especially in LOPD, need further study.
Collapse
Key Words
- Acid α-glucosidase
- CLIR, Collaborative Laboratory Integrated Reports
- CRIM, cross-reactive immunological material
- DBS, dried blood spot
- DMF, digital microfluidics
- ECG, electrocardiogram
- EF, ejection fraction
- EMG, electromyography
- ERT, enzyme replacement therapy
- Enzyme replacement therapy
- GAA, acid α-glucosidase
- GMFM-88, Gross Motor Function Measure
- Glc4, glucose tetrasaccharide
- IOPD, infantile-onset Pompe disease
- ITI, immunotolerance induction
- LOPD, late-onset Pompe disease
- LVMI, left ventricular max index
- MFM-20, motor function measurement
- MRC, Medical Research Council Scale
- MRI, magnetic resonance imaging
- MS/MS, tandem mass spectrometry
- NBS, newborn screening
- Newborn screening
- PBMC, peripheral blood mononuclear cells
- PD, Pompe disease
- PPV, positive predictive value
- Pompe disease
- RUSP, Recommended Uniform Screening Panel
- Tandem mass-spectrometry
- Urinary tetrasaccharide
- VUS, variants of uncertain significance.
- nv, normal values
- rhGAA, recombinant human GAA
Collapse
Affiliation(s)
- Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Pim W.W.M. Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stijn L.M. In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daniela Gueraldi
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Evelina Maines
- Division of Pediatrics, S. Chiara General Hospital, Trento, Italy
| | - Giulia Polo
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, and Myology Center, University of Padova, Padova, Italy
| | - Giovanni Di Salvo
- Division of Paediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy
| | - Alberto B. Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
- Corresponding author at: Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, via Orus 2/c, 35129 Padua, Italy.
| |
Collapse
|
19
|
Zhao P, Zhang N, An Z. Engineering antibody and protein therapeutics to cross the blood-brain barrier. Antib Ther 2022; 5:311-331. [PMID: 36540309 PMCID: PMC9759110 DOI: 10.1093/abt/tbac028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 08/17/2023] Open
Abstract
Diseases in the central nervous system (CNS) are often difficult to treat. Antibody- and protein-based therapeutics hold huge promises in CNS disease treatment. However, proteins are restricted from entering the CNS by the blood-brain barrier (BBB). To achieve enhanced BBB crossing, antibody-based carriers have been developed by utilizing the endogenous macromolecule transportation pathway, known as receptor-mediated transcytosis. In this report, we first provided an overall review on key CNS diseases and the most promising antibody- or protein-based therapeutics approved or in clinical trials. We then reviewed the platforms that are being explored to increase the macromolecule brain entry to combat CNS diseases. Finally, we have analyzed the lessons learned from past experiences and have provided a perspective on the future engineering of novel delivery vehicles for antibody- and protein-based therapies for CNS diseases.
Collapse
Affiliation(s)
- Peng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, Texas, USA
| |
Collapse
|
20
|
Bullock G, Johnson GS, Mhlanga-Mutangadura T, Petesch SC, Thompson S, Goebbels S, Katz ML. Lysosomal storage disease associated with a CNP sequence variant in Dalmatian dogs. Gene X 2022; 830:146513. [PMID: 35447247 DOI: 10.1016/j.gene.2022.146513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Accepted: 04/14/2022] [Indexed: 11/04/2022] Open
Abstract
A progressive neurological disorder was identified in purebred Dalmatian dogs. The disease is characterized by anxiety, pacing and circling, hypersensitivity, cognitive decline, sleep disturbance, loss of coordination, loss of control over urination and defecation, and visual impairment. Neurological signs first became apparent when the dogs were approximately 18 months of age and progressed slowly. Two affected littermates were euthanized at approximately 7 years, 5 months and 8 years, 2 months of age due to the severity of neurological impairment. The mother of the affected dogs and four other relatives exhibited milder, later-onset neurological signs. Pronounced accumulations of autofluorescent intracellular inclusions were found in cerebral cortex, cerebellum, optic nerve, and cardiac muscle of the affected dogs. These inclusions co-localized with immunolabeling of the lysosomal marker protein LAMP2 and bound antibodies to mitochondrial ATPase subunit c, indicating that the dogs suffered from a lysosomal storage disease with similarities to the neuronal ceroid lipofuscinoses. Ultrastructural analysis indicated that the storage bodies were surrounded by a single-layer membrane, but the storage granules were distinct from those reported for other lysosomal storage diseases. Whole genome sequences, generated with DNA from the two euthanized Dalmatians, both contained a rare, homozygous single-base deletion and reading-frame shift in CNP which encodes the enzyme CNPase (EC 3.1.4.37). The late-onset disease was exhibited by five of seven related Dalmatians that were heterozygous for the deletion allele and over 8 years of age, whereas none of 16 age-matched reference-allele homozygotes developed neurologic signs. No CNPase antigen could be detected with immunohistochemical labeling in tissues from the dogs with the earlier-onset disorder. Similar to the later-onset Dalmatians, autofluorescent storage granules were apparent in brain and cardiac tissue from transgenic mice that were nullizygous for Cnp. Based on the clinical signs, the histopathological, immunohistochemical, ultrastructural, and molecular-genetic findings, and the finding that nullizygous Cnp mice accumulate autofluorescent storage granules, we propose that the earlier-onset Dalmatian disorder is a novel lysosomal storage disease that results from a loss-of-function mutation in CNP and that shares features characteristic of the neuronal ceroid lipofuscinoses. That the later-onset disorder occurred only in dogs heterozygous for the CNP deletion variant suggests that this disorder is a result of the variant allele's presence.
Collapse
Affiliation(s)
- Garrett Bullock
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Gary S Johnson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tendai Mhlanga-Mutangadura
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Scott C Petesch
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | | | - Sandra Goebbels
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
21
|
Jimenez-Kurlander L, Duncan CN. Gene Therapy for Pediatric Neurologic Disease. Hematol Oncol Clin North Am 2022; 36:853-864. [PMID: 35760664 DOI: 10.1016/j.hoc.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pediatric lysosomal and peroxisomal storage disorders, leukodystrophies, and motor neuron diseases can have devastating neurologic manifestations. Despite efforts to exploit cross-correction to treat these monogenic disorders for several decades, definitive treatment has yet to be identified. This review explores recent attempts to transduce autologous hematopoietic stem cells with functional gene or provide therapeutic gene in vivo. Specifically, we discuss the rationale behind efforts to treat pediatric neurologic disorders with gene therapy, outline the specific disorders that have been targeted at this time, and review recent and current clinical investigations with attention to the future direction of therapy efforts.
Collapse
Affiliation(s)
- Lauren Jimenez-Kurlander
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Christine N Duncan
- Department of Pediatric Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Strovel ET, Cusmano-Ozog K, Wood T, Yu C. Measurement of lysosomal enzyme activities: A technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2022; 24:769-783. [PMID: 35394426 DOI: 10.1016/j.gim.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Assays that measure lysosomal enzyme activity are important tools for the screening and diagnosis of lysosomal storage disorders (LSDs). They are often ordered in combination with urine oligosaccharide and glycosaminoglycan analysis, additional biomarker assays, and/or DNA sequencing when an LSD is suspected. Enzyme testing in whole blood/leukocytes, serum/plasma, cultured fibroblasts, or dried blood spots demonstrating deficient enzyme activity remains a key component of LSD diagnosis and is often prompted by characteristic clinical findings, abnormal newborn screening, abnormal biochemical findings (eg, elevated glycosaminoglycans), or molecular results indicating pathogenic variants or variants of uncertain significance in a gene associated with an LSD. This document, which focuses on clinical enzyme testing for LSDs, provides a resource for laboratories to develop and implement clinical testing, to describe variables that can influence test performance and interpretation of results, and to delineate situations for which follow-up molecular testing is warranted.
Collapse
Affiliation(s)
- Erin T Strovel
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD
| | | | - Tim Wood
- Section of Genetics and Metabolism, Department of Pediatrics, School of Medicine, Children's Hospital Colorado Anschutz Medical Campus, Aurora, CO
| | - Chunli Yu
- Department of Genetics and Genomics Science, Icahn School of Medicine at Mount Sinai, New York, NY; Sema4, Stamford, CT
| |
Collapse
|
23
|
Silva CAB, Andrade LGMD, Vaisbich MH, Barreto FDC. Brazilian consensus recommendations for the diagnosis, screening, and treatment of individuals with fabry disease: Committee for Rare Diseases - Brazilian Society of Nephrology/2021. J Bras Nefrol 2022; 44:249-267. [PMID: 35212703 PMCID: PMC9269181 DOI: 10.1590/2175-8239-jbn-2021-0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fabry disease (FD) is an X-linked inherited disorder caused by mutations in the GLA gene encoding enzyme alpha-galactosidase A (α-Gal A). The purpose of this study was to produce a consensus statement to standardize the recommendations concerning kidney involvement in FD and provide advice on the diagnosis, screening, and treatment of adult and pediatric patients. This consensus document was organized from an initiative led by the Committee for Rare Diseases (Comdora) of the Brazilian Society of Nephrology (SBN). The review considered randomized clinical trials, real-world data studies, and the expertise of its authors. The purpose of this consensus statement is to help manage patient and physician expectations concerning the outcomes of treatment. Our recommendations must be interpreted within the context of available evidence. The decisions pertaining to each individual case must be made with the involvement of patients and their families and take into account not only the potential cost of treatment, but also concurrent conditions and personal preferences. The Comdora intends to update these recommendations regularly so as to reflect recent literature evidence, real-world data, and appreciate the professional experience of those involved. This consensus document establishes clear criteria for the diagnosis of FD and for when to start or stop specific therapies or adjuvant measures, to thus advise the medical community and standardize clinical practice.
Collapse
|
24
|
Abstract
Mucopolysaccharidosis type I (MPS I), a lysosomal storage disease caused by a deficiency of α-L-iduronidase, leads to storage of the glycosaminoglycans, dermatan sulfate and heparan sulfate. Available therapies include enzyme replacement and hematopoietic stem cell transplantation. In the last two decades, newborn screening (NBS) has focused on early identification of the disorder, allowing early intervention and avoiding irreversible manifestations. Techniques developed and optimized for MPS I NBS include tandem mass-spectrometry, digital microfluidics, and glycosaminoglycan quantification. Several pilot studies have been conducted and screening programs have been implemented worldwide. NBS for MPS I has been established in Taiwan, the United States, Brazil, Mexico, and several European countries. All these programs measure α-L-iduronidase enzyme activity in dried blood spots, although there are differences in the analytical strategies employed. Screening algorithms based on published studies are discussed. However, some limitations remain: one is the high rate of false-positive results due to frequent pseudodeficiency alleles, which has been partially solved using post-analytical tools and second-tier tests; another involves the management of infants with late-onset forms or variants of uncertain significance. Nonetheless, the risk-benefit ratio is favorable. Furthermore, long-term follow-up of patients detected by neonatal screening will improve our knowledge of the natural history of the disease and inform better management.
Collapse
Affiliation(s)
- Alberto B Burlina
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Vincenza Gragnaniello
- Division of Inherited Metabolic Diseases, Department of Diagnostic Services, University Hospital, Padua, Italy
| |
Collapse
|
25
|
Qadir H, Baig MM, Adil A, Aisha M, Raees I. Niemann-Pick Disease on Bone Marrow Trephine: A Rare Manifestation. Cureus 2021; 13:e19246. [PMID: 34877220 PMCID: PMC8642814 DOI: 10.7759/cureus.19246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/05/2022] Open
Abstract
Niemann-Pick disease has an autosomal recessive inheritance pattern and occurs due to a deficiency of a lysosomal enzyme, sphingomyelinase. It causes variable clinical signs and symptoms such as hepatosplenomegaly, delayed milestones, and peripheral cytopenia due to bone marrow involvement. Here, we report a case of a child who presented with hepatosplenomegaly and pancytopenia, who was later found to have Niemann-Pick disease on bone marrow examination. This case highlights the case presentations of this rare disease and the importance of bone marrow trephine in prompt diagnosis and management of a patient.
Collapse
Affiliation(s)
- Hira Qadir
- Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, PAK
| | - Mahad M Baig
- Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, PAK
| | - Anas Adil
- Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, PAK
| | - Maria Aisha
- Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, PAK
| | - Izzan Raees
- Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
26
|
Matsuhisa K, Imaizumi K. Loss of Function of Mutant IDS Due to Endoplasmic Reticulum-Associated Degradation: New Therapeutic Opportunities for Mucopolysaccharidosis Type II. Int J Mol Sci 2021; 22:ijms222212227. [PMID: 34830113 PMCID: PMC8618218 DOI: 10.3390/ijms222212227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.
Collapse
Affiliation(s)
- Koji Matsuhisa
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| | - Kazunori Imaizumi
- Correspondence: (K.M.); (K.I.); Tel.: +81-82-257-5131 (K.M.); +81-82-257-5130 (K.I.)
| |
Collapse
|
27
|
Can NTB, Tran DM, Bui TP, Nguyen KN, Nguyen HH, Nguyen TV, Hwu WL, Tomatsu S, Vu DC. Molecular Analysis of Vietnamese Patients with Mucopolysaccharidosis Type I. Life (Basel) 2021; 11:life11111162. [PMID: 34833038 PMCID: PMC8621179 DOI: 10.3390/life11111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare autosomal recessive disorder caused by deleterious mutations in the α-L-iduronidase (IDUA) gene. Until now, MPS I in Vietnamese has been poorly addressed. Five MPS I patients were studied with direct DNA sequencing using Illumina technology confirming pathogenic variants in the IDUA gene. Clinical characteristics, additional laboratory results, and family history were collected. All patients have presented with the classical characteristic of MPS I, and α-L-iduronidase activity was low with the accumulation of glycosaminoglycans. Three variants in the IDUA gene (c.1190-10C>A (Intronic), c.1046A>G (p.Asp349Gly), c.1862G>C (p.Arg621Pro) were identified. The c.1190-10C>A variant represents six of the ten disease alleles, indicating a founder effect for MPS I in the Vietnamese population. Using biochemical and genetic analyses, the precise incidence of MPS I in this population should accelerate early diagnosis, newborn screening, prognosis, and optimal treatment.
Collapse
Affiliation(s)
- Ngoc Thi Bich Can
- Vietnam National Children’s Hospital, 18/879 Lathanh, Dongda, Hanoi 100000, Vietnam; (N.T.B.C.); (D.M.T.); (T.P.B.); (K.N.N.)
| | - Dien Minh Tran
- Vietnam National Children’s Hospital, 18/879 Lathanh, Dongda, Hanoi 100000, Vietnam; (N.T.B.C.); (D.M.T.); (T.P.B.); (K.N.N.)
| | - Thao Phuong Bui
- Vietnam National Children’s Hospital, 18/879 Lathanh, Dongda, Hanoi 100000, Vietnam; (N.T.B.C.); (D.M.T.); (T.P.B.); (K.N.N.)
| | - Khanh Ngoc Nguyen
- Vietnam National Children’s Hospital, 18/879 Lathanh, Dongda, Hanoi 100000, Vietnam; (N.T.B.C.); (D.M.T.); (T.P.B.); (K.N.N.)
| | - Hoang Huy Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi 100000, Vietnam; (H.H.N.); (T.V.N.)
| | - Tung Van Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi 100000, Vietnam; (H.H.N.); (T.V.N.)
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei 10041, Taiwan;
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, DuPont Experimental Station, Bldg. E400. #5205, 200 Powder Mill Rd., Wilmington, DE 19803, USA;
| | - Dung Chi Vu
- Vietnam National Children’s Hospital, 18/879 Lathanh, Dongda, Hanoi 100000, Vietnam; (N.T.B.C.); (D.M.T.); (T.P.B.); (K.N.N.)
- Correspondence: ; Tel.: +84-904-242-010
| |
Collapse
|
28
|
La Cognata V, Guarnaccia M, Morello G, Ruggieri M, Polizzi A, Cavallaro S. Design and Validation of a Custom NGS Panel Targeting a Set of Lysosomal Storage Diseases Candidate for NBS Applications. Int J Mol Sci 2021; 22:ijms221810064. [PMID: 34576242 PMCID: PMC8470217 DOI: 10.3390/ijms221810064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of approximately 70 monogenic metabolic disorders whose diagnosis represents an arduous challenge for clinicians due to their variability in phenotype penetrance, clinical manifestations, and high allelic heterogeneity. In recent years, the approval of disease-specific therapies and the rapid emergence of novel rapid diagnostic methods has opened, for a set of selected LSDs, the possibility for inclusion in extensive national newborn screening (NBS) programs. Herein, we evaluated the clinical utility and diagnostic validity of a targeted next-generation sequencing (tNGS) panel (called NBS_LSDs), designed ad hoc to scan the coding regions of six genes (GBA, GAA, SMPD1, IDUA1, GLA, GALC) relevant for a group of LSDs candidate for inclusion in national NBS programs (MPSI, Pompe, Fabry, Krabbe, Niemann Pick A-B and Gaucher diseases). A standard group of 15 samples with previously known genetic mutations was used to test and validate the entire flowchart. Analytical accuracy, sensitivity, and specificity, as well as turnaround time and costs, were assessed. Results showed that the Ion AmpliSeq and Ion Chef System-based high-throughput NBS_LSDs tNGS panel is a fast, accurate, and cost-effective process. The introduction of this technology into routine NBS procedures as a second-tier test along with primary biochemical assays will allow facilitating the identification and management of selected LSDs and reducing diagnostic delay.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy; (V.L.C.); (M.G.); (G.M.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy; (V.L.C.); (M.G.); (G.M.)
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy; (V.L.C.); (M.G.); (G.M.)
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, 95123 Catania, Italy;
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, 95124 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, 95126 Catania, Italy; (V.L.C.); (M.G.); (G.M.)
- Correspondence: ; Tel.: +39-095-733-8111; Fax: +39-095-733-8110
| |
Collapse
|
29
|
Sodré LSDS, Huaira RMNH, Colugnati FAB, Carminatti M, Braga LSDS, Coutinho MP, Fernandes NMDS. Screening of family members of chronic kidney disease patients with Fabry disease mutations: a very important and underrated task. ACTA ACUST UNITED AC 2021; 43:28-33. [PMID: 32930322 PMCID: PMC8061964 DOI: 10.1590/2175-8239-jbn-2020-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/26/2020] [Indexed: 11/26/2022]
Abstract
Introduction: Fabry disease is a chronic, progressive, and multi-system hereditary condition, related to an Xq22 mutation in X chromosome, which results in deficiency of alpha-galactosidase enzyme, hence reduced capacity of globotriaosylceramide degradation. Objectives: to evaluate the prevalence of Fabry disease (FD) mutations, as well as its signs and symptoms, among relatives of chronic kidney disease (CKD) patients diagnosed with FD during a previously conducted study, named “Clinical and epidemiological analysis of Fabry disease in dialysis centers in Brazil”. Methods: a cross-sectional study was carried out, and data was collected by interviewing the relatives of patients enrolled in the Brazil Fabry Kidney Project and blood tests for both Gb3 dosage and genetic testing. Results: Among 1214 interviewed relatives, 115 (9.47%) were diagnosed with FD, with a predominance of women (66.10%). The most prevalent comorbidities were rheumatologic conditions and systemic hypertension (1.7% each), followed by heart, neurological, cerebrovascular diseases, and depression in 0.9% of individuals. Intolerance to physical exercise and tiredness were the most observed symptoms (1.7%), followed by periodic fever, intolerance to heat or cold, diffuse pain, burn sensation or numbness in hands and feet, reduced or absent sweating, as well as abdominal pain after meals in 0.9%. Conclusion: We found a prevalence of Fabry disease in 9.47% of relatives of CKD patients with this condition, remarkably with a 66.1% predominance of women, which contrasts with previous reports. The screening of family members of FD patients is important, since it can lead to early diagnosis and treatment, thus allowing better quality of life and improved clinical outcomes for these individuals.
Collapse
|
30
|
Sanchez-Alvarez NT, Bautista-Niño PK, Trejos-Suárez J, Serrano-Diaz NC. Metachromatic Leukodystrophy: Diagnosis and Treatment Challenges. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Metachromatic leukodystrophy is a neurological disease of the lysosomal deposit that has a significant impact given the implications for the neurodegenerative deterioration of the patient. Currently, there is no treatment available that reverses the development of characteristic neurological and systemic symptoms. Objective. Carry out an updated bibliographic search on the most critical advances in the treatment and diagnosis for LDM. A retrospective topic review published in English and Spanish in the Orphanet and Pubmed databases. Current treatment options, such as enzyme replacement therapy and hematopoietic stem cell transplantation aimed at decreasing the rapid progression of the disease, improving patient survival; however, these are costly. The pathophysiological events of intracellular signaling related to the deficiency of the enzyme Arylsulfatase A and subsequent accumulation of sulphatides and glycosylated ceramides have not yet been established. Recently, the accumulation of C16 sulphatides has been shown to inhibit glycolysis and insulin secretion in pancreatic cells. The significant advance in technology has allowed timely diagnosis in patients suffering from LDM; however, they still do not have an effective treatment.
Collapse
Affiliation(s)
- Nayibe Tatiana Sanchez-Alvarez
- Universidad del Valle, Faculty of Health, Biomedical Sciences Doctorate Program, Colombian Cardiovascular Foundation, Research Center. Floridablanca, Santander, Colombia. Universidad de Santander, Faculty of Health Sciences, CliniUDES Research Group, Bucaramanga, Santander, Colombia
| | | | - Juanita Trejos-Suárez
- Universidad de Santander, Faculty of Health Sciences, CliniUDES Research Group, Bucaramanga, Santander, Colombia
| | | |
Collapse
|
31
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
32
|
Recapture Lysosomal Enzyme Deficiency via Targeted Gene Disruption in the Human Near-Haploid Cell Line HAP1. Genes (Basel) 2021; 12:genes12071076. [PMID: 34356092 PMCID: PMC8308024 DOI: 10.3390/genes12071076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Advancement in genome engineering enables rapid and targeted disruption of any coding sequences to study gene functions or establish human disease models. We explored whether this approach can be used to study Gaucher disease, one of the most common types of lysosomal storage diseases (LSDs) in a near-haploid human cell line (HAP1). RESULTS CRISPR-Cas9 targeting to coding sequences of β-glucocerebrosidase (GBA), the causative gene of Gaucher disease, resulted in an insertional mutation and premature termination of GBA. We confirmed the GBA knockout at both the gene and enzyme levels by genotyping and GBA enzymatic assay. Characterization of the knockout line showed no significant changes in cell morphology and growth. Lysosomal staining revealed more granular lysosomes in the cytosol of the GBA-knockout line compared to its parental control. Flow cytometry analysis further confirmed that more lysosomes accumulated in the cytosol of the knockout line, recapturing the disease phenotype. Finally, we showed that this knockout cell line could be used to evaluate a replacement therapy by recombinant human GBA. CONCLUSIONS Targeted gene disruption in human HAP1 cells enables rapid establishment of the Gaucher model to capture the key pathology and to test replacement therapy. We expect that this streamlined method can be used to generate human disease models of other LSDs, most of which are still lacking both appropriate human disease models and specific treatments to date.
Collapse
|
33
|
Wasserstein MP, Orsini JJ, Goldenberg A, Caggana M, Levy PA, Breilyn M, Gelb MH. The future of newborn screening for lysosomal disorders. Neurosci Lett 2021; 760:136080. [PMID: 34166724 PMCID: PMC10387443 DOI: 10.1016/j.neulet.2021.136080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 10/25/2022]
Abstract
The goal of newborn screening is to enhance the outcome of individuals with serious, treatable disorders through early, pre-symptomatic detection. The lysosomal storage disorders (LSDs) comprise a group of more than 50 diseases with a combined frequency of approximately 1:7000. With the availability of existing and new enzyme replacement therapies, small molecule treatments and gene therapies, there is increasing interest in screening newborns for LSDs with the goal of reducing disease-related morbidity and mortality through early detection. Novel screening methods are being developed, including efforts to enhance accuracy of screening using an array of multi-tiered, genomic, statistical, and bioinformatic approaches. While NBS data for Gaucher disease, Fabry disease, Krabbe disease, MPS I, and Pompe disease has demonstrated the feasibility of widespread screening, it has also highlighted some of the complexities of screening for LSDs. These include the identification of infants with later-onset, untreatable, and uncertain phenotypes, raising interesting ethical concerns that should be addressed as part of the NBS implementation process. Taken together, these efforts will provide critical, detailed data to help guide objective, ethically sensitive decision-making about NBS for LSDs.
Collapse
Affiliation(s)
- Melissa P Wasserstein
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States.
| | - Joseph J Orsini
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Aaron Goldenberg
- Department of Bioethics, Case Western Reserve University, Cleveland, OH, United States
| | - Michele Caggana
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Paul A Levy
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Margo Breilyn
- Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, Bronx, NY, United States
| | - Michael H Gelb
- Department of Chemistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
34
|
Héron B, Billette de Villemeur T, Dufaure Garé I, Brassier A, Chabrol B, Pichard S, Feillet F, Guemann A, Barth M, Tardieu M, Nadjar Y, Belmatoug N, Sacaze E, Roubertie A, Cador B, Beze-Beyrie P, Klising E, Guéguen S, Amselem S. Étude des mucopolysaccharidoses en France : constitution de la cohorte RaDiCo-MPS. Rev Epidemiol Sante Publique 2021. [DOI: 10.1016/j.respe.2021.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Alharby E, Obaid M, Elamin MAO, Almuntashri M, Bakhsh I, Samman M, Peake RWA, Alasmari A, Almontashiri NAM. Progressive Ataxia and Neurologic Regression in RFXANK-Associated Bare Lymphocyte Syndrome. NEUROLOGY-GENETICS 2021; 7:e586. [PMID: 33855173 PMCID: PMC8042776 DOI: 10.1212/nxg.0000000000000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/17/2021] [Indexed: 11/30/2022]
Abstract
Objective To identify the genetic cause of a late-onset immunodeficiency and subacute progressive neurodegenerative disease affecting cognition, motor, visual, and cerebellar systems in a patient with a family history of 2 younger siblings with an early-onset immunodeficiency disease. Methods Physical examinations, immunologic, brain MRI, whole-exome sequencing, and segregation studies were used to identify the genetic and neuroimmunologic etiology of disease in this family. Results We identified a homozygous loss-of-function (LOF) mutation (c.271+1G>C) in the RFXANK gene in the index patient and one of his younger affected siblings. Biallelic mutations in the RFXANK gene are known to cause bare lymphocyte syndrome (BLS) type II, complementation group B. The clinical and immunologic investigations were consistent with a clinical diagnosis of BLS type II. MRI demonstrated global cerebral and cerebellar atrophy with white matter signal changes in the index case. Conclusions In addition to BLS type II, our study has expanded and further characterized the phenotype associated with the LOF of RFXANK to include progressive neurodegenerative disease. Our study also provides evidence for the impact of LOF on brain development and function. Thus, early bone marrow transplantation, as a standard of care for BLS, could prove to be protective against the neurologic phenotypes in this group of patients.
Collapse
Affiliation(s)
- Essa Alharby
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mona Obaid
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed A O Elamin
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Makki Almuntashri
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ismail Bakhsh
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Manar Samman
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Roy W A Peake
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases (E.A., N.A.M.A.), and Faculty of Applied Medical Sciences (N.A.M.A.), Taibah University, Almadinah Almunwarah; Department of Adults Neurology (M.O.), National Neuroscience Institute, King Fahad Medical City; Section of Medical Genetics (M.A.O.E.), Childrens Specialist Hospital, King Fahad Medical City; Department of Medical Imaging in King Abdulaziz Medical City (M.A.), King Saud Ibn Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center; Pathology and Clinical Laboratory Medicine Administration (I.B.), King Fahad Medical City; Molecular Pathology (M.S.), Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; Department of Laboratory Medicine (R.W.A.P.), Boston Childrens Hospital, MA; Section of Medical Genetics (A.A.), Childrens Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Hu J, Maegawa GHB, Zhan X, Gao X, Wang Y, Xu F, Qiu W, Han L, Gu X, Zhang H. Clinical, biochemical, and genotype-phenotype correlations of 118 patients with Niemann-Pick disease Types A/B. Hum Mutat 2021; 42:614-625. [PMID: 33675270 DOI: 10.1002/humu.24192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Niemann-Pick disease Types A and B (NPA/B) are autosomal recessive disorders caused by variants in the sphingomyelin phosphodiesterase-1 (SMPD1) gene. This study aimed to describe and characterize a cohort of 118 patients diagnosed with NPA/B based on clinical, biochemical, and molecular findings, and to identify sound correlations between laboratory findings and clinical presentations. Decreased peripheral leukocyte acid sphingomyelinase activity levels and increased plasma 7-ketocholesterol levels were significantly correlated with disease onset and severity of the clinical course. We identified 92 different sequence SMPD1 variants, including 41 novel variants, in 118 NPA/B patients (19 NPA, 24 intermediate type, 75 NPB). The most prevalent mutation was p.Arg602His, which accounted for 9.3% of the alleles. Patients homozygous for p.Arg602His or p.Asn522Ser showed a late-onset form of the NPB phenotype. The homozygous SMPD1 variant p.Tyr500His correlated with the early-onset NPB clinical form. Additionally, homozygous variants p.His284SerfsX18, p.Phe465Ser, and p.Ser486Arg were associated with the neuronopathic NPA clinical form. The homozygous variant p.Arg3AlafsX74 was associated with the intermediate clinical form. Our study contributes to the understanding of the natural history of NPA/B and assists in the development of efficacious treatments for patients afflicted with this devastating lysosomal storage disorder.
Collapse
Affiliation(s)
- Jiayue Hu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gustavo H B Maegawa
- Departments of Pediatrics Genetics and Metabolism, Neuroscience, Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Xia Zhan
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolan Gao
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Xu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Qiu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianshu Han
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefan Gu
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Zhang
- Pediatric Endocrinology and Genetic, Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Peters H, Ellaway C, Nicholls K, Reardon K, Szer J. Treatable lysosomal storage diseases in the advent of disease-specific therapy. Intern Med J 2021; 50 Suppl 4:5-27. [PMID: 33210402 DOI: 10.1111/imj.15100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lysosomal storage diseases (LSD) comprise a rare and heterogeneous group of nearly 50 heritable metabolic disorders caused by mutations in proteins critical for cellular lysosomal function. Defects in the activity of these proteins in multiple organs leads to progressive intra-lysosomal accumulation of specific substrates, resulting in disruption of cellular functions, extracellular inflammatory responses, tissue damage and organ dysfunction. The classification and clinical presentation of different LSD are dependent on the type of accumulated substrate. Some clinical signs and symptoms are common across multiple LSD, while others are more specific to a particular syndrome. Due to the rarity and wide clinical diversity of LSD, identification and diagnosis can be challenging, and in many cases diagnosis is delayed for months or years. Treatments, such as enzyme replacement therapy, haemopoietic stem cell transplantation and substrate reduction therapy, are now available for some of the LSD. For maximum effect, therapy must be initiated prior to the occurrence of irreversible tissue damage, highlighting the importance of prompt diagnosis. Herein, we discuss the clinical presentation, diagnosis and treatment of four of the treatable LSD: Gaucher disease, Fabry disease, Pompe disease, and two of the mucopolysaccharidoses (I and II). For each disease, we present illustrative case studies to help increase awareness of their clinical presentation and possible treatment outcomes.
Collapse
Affiliation(s)
- Heidi Peters
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Carolyn Ellaway
- Genetic Metabolic Disorders Service, Sydney Children's Hospital Network, Sydney, New South Wales, Australia.,The Disciplines of Child and Adolescent Health and Genomic Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Kathleen Nicholls
- Department of Nephrology, Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Katrina Reardon
- Department of Neurology, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Jeff Szer
- Clinical Haematology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Masi L, Ferrari S, Javaid MK, Papapoulos S, Pierroz DD, Brandi ML. Bone fragility in patients affected by congenital diseases non skeletal in origin. Orphanet J Rare Dis 2021; 16:11. [PMID: 33407701 PMCID: PMC7789665 DOI: 10.1186/s13023-020-01611-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone tissue represents a large systemic compartment of the human body, with an active metabolism, that controls mineral deposition and removal, and where several factors may play a role. For these reasons, several non-skeletal diseases may influence bone metabolism. It is of a crucial importance to classify these disorders in order to facilitate diagnosis and clinical management. This article reports a taxonomic classification of non-skeletal rare congenital disorders, which have an impact on bone metabolism METHODS: The International Osteoporosis Foundation (IOF) Skeletal Rare Diseases Working Group (SRD-WG), comprised of basic and clinical scientists, has decided to review the taxonomy of non-skeletal rare disorders that may alter bone physiology. RESULTS The taxonomy of non-skeletal rare congenital disorders which impact bone comprises a total of 6 groups of disorders that may influence the activity of bone cells or the characteristics of bone matrix. CONCLUSIONS This paper provides the first comprehensive taxonomy of non-skeletal rare congenital disorders with impact on bone physiology.
Collapse
Affiliation(s)
- L Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU-Careggi, Florence, Italy
| | - S Ferrari
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - M K Javaid
- Oxford NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - S Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Rue Juste-Olivier 9, 1260, Nyon, Switzerland
| | - M L Brandi
- Fondazione Italiana Ricerca sulle Malattie dell'Osso, Florence, Italy.
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
39
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
40
|
Rey LM, Sánchez TA, Naranjo DC, Cuesta HV. A Novel Mutation (p.Met1?) of a Cuban Patient in the NAGLU Gene with Mucopolysaccharidosis IIIB. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
41
|
Alonso-Fernández JR, López JF. Review and Proposal of Alternative Technologies for Comprehensive and Reliable Newborn Screening Using Paper Borne Urine Samples for Lysosomal Storage Disorders: Glycosphingolipid Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
de Haan N, Wuhrer M, Ruhaak L. Mass spectrometry in clinical glycomics: The path from biomarker identification to clinical implementation. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:1-12. [PMID: 34820521 PMCID: PMC8600986 DOI: 10.1016/j.clinms.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023]
Abstract
Over the past decades, the genome and proteome have been widely explored for biomarker discovery and personalized medicine. However, there is still a large need for improved diagnostics and stratification strategies for a wide range of diseases. Post-translational modification of proteins by glycosylation affects protein structure and function, and glycosylation has been implicated in many prevalent human diseases. Numerous proteins for which the plasma levels are nowadays evaluated in clinical practice are glycoproteins. While the glycosylation of these proteins often changes with disease, their glycosylation status is largely ignored in the clinical setting. Hence, the implementation of glycomic markers in the clinic is still in its infancy. This is for a large part caused by the high complexity of protein glycosylation itself and of the analytical techniques required for their robust quantification. Mass spectrometry-based workflows are particularly suitable for the quantification of glycans and glycoproteins, but still require advances for their transformation from a biomedical research setting to a clinical laboratory. In this review, we describe why and how glycomics is expected to find its role in clinical tests and the status of current mass spectrometry-based methods for clinical glycomics.
Collapse
Affiliation(s)
- N. de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - M. Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - L.R. Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Schwarz M, Skrinjar P, Fink MJ, Kronister S, Mechtler T, Koukos PI, Bonvin AMJJ, Kasper DC, Mikula H. A click-flipped enzyme substrate boosts the performance of the diagnostic screening for Hunter syndrome. Chem Sci 2020; 11:12671-12676. [PMID: 34094461 PMCID: PMC8163285 DOI: 10.1039/d0sc04696e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
We report on the unexpected finding that click modification of iduronyl azides results in a conformational flip of the pyranose ring, which led to the development of a new strategy for the design of superior enzyme substrates for the diagnostic assaying of iduronate-2-sulfatase (I2S), a lysosomal enzyme related to Hunter syndrome. Synthetic substrates are essential in testing newborns for metabolic disorders to enable early initiation of therapy. Our click-flipped iduronyl triazole showed a remarkably better performance with I2S than commonly used O-iduronates. We found that both O- and triazole-linked substrates are accepted by the enzyme, irrespective of their different conformations, but only the O-linked product inhibits the activity of I2S. Thus, in the long reaction times required for clinical assays, the triazole substrate substantially outperforms the O-iduronate. Applying our click-flipped substrate to assay I2S in dried blood spots sampled from affected patients and random newborns significantly increased the confidence in discriminating between these groups, clearly indicating the potential of the click-flip strategy to control the biomolecular function of carbohydrates.
Collapse
Affiliation(s)
- Markus Schwarz
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
- ARCHIMED Life Science GmbH Leberstraße 20 1110 Vienna Austria
| | - Philipp Skrinjar
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Stefan Kronister
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| | - Thomas Mechtler
- ARCHIMED Life Science GmbH Leberstraße 20 1110 Vienna Austria
| | - Panagiotis I Koukos
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University Padualaan 8 3584CH Utrecht The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University Padualaan 8 3584CH Utrecht The Netherlands
| | - David C Kasper
- ARCHIMED Life Science GmbH Leberstraße 20 1110 Vienna Austria
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9 1060 Vienna Austria
| |
Collapse
|
44
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Mullagulova AI, Kitaeva KV, Allegrucci C, Rizvanov AA. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front Med (Lausanne) 2020; 7:576221. [PMID: 33195324 PMCID: PMC7606900 DOI: 10.3389/fmed.2020.576221] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Metachromatic leukodystrophy is a lysosomal storage disease, which is characterized by damage of the myelin sheath that covers most of nerve fibers of the central and peripheral nervous systems. The disease occurs due to a deficiency of the lysosomal enzyme arylsulfatase A (ARSA) or its sphingolipid activator protein B (SapB) and it clinically manifests as progressive motor and cognitive deficiency. ARSA and SapB protein deficiency are caused by mutations in the ARSA and PSAP genes, respectively. The severity of clinical course in metachromatic leukodystrophy is determined by the residual ARSA activity, depending on the type of mutation. Currently, there is no effective treatment for this disease. Clinical cases of bone marrow or cord blood transplantation have been reported, however the therapeutic effectiveness of these methods remains insufficient to prevent aggravation of neurological disorders. Encouraging results have been obtained using gene therapy for delivering the wild-type ARSA gene using vectors based on various serotypes of adeno-associated viruses, as well as using mesenchymal stem cells and combined gene-cell therapy. This review discusses therapeutic strategies for the treatment of metachromatic leukodystrophy, as well as diagnostic methods and modeling of this pathology in animals to evaluate the effectiveness of new therapies.
Collapse
Affiliation(s)
- Alisa A Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Moscow, Russia
| | - Aysilu I Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Cinzia Allegrucci
- School of Veterinary Medicine and Science (SVMS) and Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
45
|
Martins AM, Pessoa ALS, Quesada AA, Ribeiro EM. Unmet needs in PKU and the disease impact on the day-to-day lives in Brazil: Results from a survey with 228 patients and their caregivers. Mol Genet Metab Rep 2020; 24:100624. [PMID: 32742934 PMCID: PMC7387838 DOI: 10.1016/j.ymgmr.2020.100624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Accumulation of phenylalanine (Phe) due to deficiency in the enzyme phenylalanine hydroxylase (PAH), responsible for the conversion of Phe into tyrosine leads to Phenylketonuria (PKU), a rare autosomal recessive inborn error of metabolism with a mean prevalence of approximately 1:10,000 to 1:15,000 newborns. Physical, neurocognitive and psychiatric symptoms include neurodevelopmental disorder as intellectual disability and autism spectrum disorder. The most common treatments such as low-Phe diet and supplements may decrease blood Phe concentrations, but neuropsychological, behavioral and social issues still occur in some patients. This study aimed to better understand (i) the Brazilian population's knowledge about newborn screening (NBS), the main diagnostic method for PKU, as well as (ii) the impacts of phenylketonuria in the daily lives of patients and parents. METHODS Two surveys in Real World Data format gathering of Brazilian residents by online questionnaires with (i) 1000 parents of children up to 5 years old between March and April 2019; (ii) 228 PKU patients and caregivers in March 2019. The survey was conducted in partnership with Abril Publisher and two Brazilian patient associations: Metabolic Mothers and SAFE Brasil, for families with rare diseases and PKU patients, respectively. RESULTS The first questionnaire shows that 93% of parents recognize the importance of NBS and 92% report that their children have undergone the test. Still, two out of ten participants did not know what the exam is or what it is for. From the second questionnaire nine out of ten patients had their PKU diagnosis by NBS. Although strict dietary controls for PKU were claimed by 44% of respondents from second questionnaire, 55% assume not following all nutritionist recommendations and 52% did not maintain routinely Phe control levels. In addition, 53% said they had high spending on medical appointments, therapies and purchase of special foods. CONCLUSIONS Despite the lack of understanding, the awareness of NBS importance is present in the studied population. The early diagnosis of most PKU patients in the study corroborates with neonatal screening central role of PKU early detection. The difficulty in adhering to dietary adjustments and the possibility that current and new therapeutic strategies other than diet could be determinant to achieve the recommended Phe levels.
Collapse
Affiliation(s)
- Ana Maria Martins
- Reference Center in Inborn Errors of Metabolism, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andre Luiz Santos Pessoa
- Albert Sabin Children's Hospital, Fortaleza, Ceará, Brazil
- State University of Ceará (UECE), Fortaleza, Ceará, Brazil
| | | | - Erlane Marques Ribeiro
- Albert Sabin Children's Hospital, Fortaleza, Ceará, Brazil
- Christus University Center Medical School, Fortaleza, Brazil
| |
Collapse
|
46
|
La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020; 9:E1902. [PMID: 32824006 PMCID: PMC7465195 DOI: 10.3390/cells9081902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex and still not fully understood, the approval of disease-specific therapies and the rapid emergence of novel diagnostic methods led to the implementation of extensive national newborn screening (NBS) programs in several countries. In the near future, this will help the development of standardized workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and discuss the opportunities and challenges arising from genomics applications in screening, diagnosis, and research.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39, 95124 Catania, Italy;
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, Via S. Sofia, 78, 95123 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| |
Collapse
|
47
|
Massaro G, Hughes MP, Whaler SM, Wallom KL, Priestman DA, Platt FM, Waddington SN, Rahim AA. Systemic AAV9 gene therapy using the synapsin I promoter rescues a mouse model of neuronopathic Gaucher disease but with limited cross-correction potential to astrocytes. Hum Mol Genet 2020; 29:1933-1949. [PMID: 31919491 PMCID: PMC7390934 DOI: 10.1093/hmg/ddz317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Gaucher disease is caused by mutations in the GBA gene, which encodes for the lysosomal enzyme β-glucocerebrosidase (GCase), resulting in the accumulation of storage material in visceral organs and in some cases the brain of affected patients. While there is a commercially available treatment for the systemic manifestations, neuropathology still remains untreatable. We previously demonstrated that gene therapy represents a feasible therapeutic tool for the treatment of the neuronopathic forms of Gaucher disease (nGD). In order to further enhance the therapeutic affects to the central nervous system, we systemically delivered an adeno-associated virus (AAV) serotype 9 carrying the human GBA gene under control of a neuron-specific promoter to an nGD mouse model. Gene therapy increased the life span of treated animals, rescued the lethal neurodegeneration, normalized the locomotor behavioural defects and ameliorated the visceral pathology. Together, these results provided further indication of gene therapy as a possible effective treatment option for the neuropathic forms of Gaucher disease.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London, UK
| | | | - Sammie M Whaler
- UCL School of Pharmacy, University College London, London, UK
| | | | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Simon N Waddington
- EGA Institute for Women’s Health, University College London, London UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Science, University of the Witswatersrand, Johannesburg, South Africa
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|
48
|
Wu S, Hou M, Zhang Y, Song J, Guo Y, Liu P, Liu Y, Yi L, Pan X, We W, Chen Z. Chinese Cases of Metachromatic Leukodystrophy with the Novel Missense Mutations in ARSA Gene. J Mol Neurosci 2020; 71:245-251. [PMID: 32617873 DOI: 10.1007/s12031-020-01643-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/19/2020] [Indexed: 11/30/2022]
Abstract
Metachromatic leukodystrophy(MLD) is an autosomal recessive hereditary neurodegenerative lysosomal storage disorder caused by the mutations in arylsulfatase A gene (ARSA), which results in the deficiency of ARSA enzyme. The common clinical characteristics of MLD are abnormal gait, and then gradually appears ataxia, spastic quadriplegia, optic atrophy, cortical blindness, and dementia. We describe two patients in China who were diagnosed with MLD and find that the four ARSA gene mutations (c.1115G>A, c.302G>T, c.893 G> T, and c.302G>T) are associated with MLD, in which c.893 G>T and c.302G>T are novel mutations by gene sequence and clinical manifestations, to further understand the relationship between MLD and ARSA gene.
Collapse
Affiliation(s)
- Sifei Wu
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Mei Hou
- Pediatric Department, Qingdao Women & Children Hospital, No. 6 Tongfu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Yu Zhang
- Ophthalmology Department, Qingdao Municipal Hospital, No. 1 Jiaozhou Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Jie Song
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Ya Guo
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Peipei Liu
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Yedan Liu
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Liping Yi
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Xiaoyu Pan
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China
| | - Wei We
- Kangso Medical Inspection Co., Ltd., No.65 Haidian District, Xingshikou Road Yiyuan Cultural Creative Industry Base C District No. 10, Floor 2, 201-203, Beijing, 100195, People's Republic of China
| | - Zongbo Chen
- Pediatric Department, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
49
|
Greillier S, Daniel L, Caillaud C, Dussol B, Touchard G, Goujon JM, Jourde-Chiche N, Bobot M. First phenotypic description of a female patient with c.610 T > C variant of GLA: a renal-predominant presentation of Fabry disease. BMC MEDICAL GENETICS 2020; 21:137. [PMID: 32590976 PMCID: PMC7320597 DOI: 10.1186/s12881-020-01071-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/17/2020] [Indexed: 01/19/2023]
Abstract
Background Fabry disease (FD) is an X-linked lysosomal storage disorder due to deficient alpha-galactosidase activity leading to intracellular glycosphingolipid accumulation. Multiple variants have been reported in the GLA gene coding for alpha-galactosidase, and the question of the pathogenicity of rare variants needs to be addressed, especially in patients with mild phenotypes. Case presentation The patient, a 37-year-old female, presented with a persistent proteinuria after an otherwise uncomplicated first pregnancy. Renal biopsy showed both mild mesangial IgA deposits, and a striking vacuolization of podocytes and tubular cells consistent with Fabry disease. On electron microscopy, discrete but characteristic pseudo-myelinic lamellar inclusions were observed in the podocytes’ lysosomes. A more detailed physical examination revealed an angiokeratoma, and medical history ancient acroparesthesia. There was no cardiac or cerebral involvement of Fabry disease on magnetic resonance imaging. While blood enzymatic activity of alpha-ga lactosidase was normal in this patient, lysoGb3 was elevated (3 N), and a rare heterozygous variant called c.610 T > C was documented in GLA gene. The patient was treated with an ACE inhibitor, with a rapid decrease in proteinuria. After a 5-year follow-up, her renal function has remained normal, with mild proteinuria, and normal cardiac echography. Conclusions We report and phenotypically describe the first case of a Fabry disease female patient carrying the GLA c.610 T > C variant associated with a renal-predominant clinical presentation.
Collapse
Affiliation(s)
- Sophie Greillier
- AP-HM, Centre de Néphrologie et Transplantation Rénale, CHU de la Conception, AP-HM, Marseille, France
| | - Laurent Daniel
- Aix-Marseille Univ, C2VN, INSERM, INRAE, Marseille, France.,AP-HM, Laboratoire d'Anatomie Pathologique, CHU de la Timone, Marseille, France
| | - Catherine Caillaud
- Laboratoire de Biochimie, Métabolomique et Protéomique, AP-HP. Centre-Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Bertrand Dussol
- AP-HM, Centre de Néphrologie et Transplantation Rénale, CHU de la Conception, AP-HM, Marseille, France.,Aix-Marseille Univ, C2VN, INSERM, INRAE, Marseille, France
| | - Guy Touchard
- Laboratoire d'Anatomie Pathologique, CHU de Poitiers, Poitiers, France
| | | | - Noémie Jourde-Chiche
- AP-HM, Centre de Néphrologie et Transplantation Rénale, CHU de la Conception, AP-HM, Marseille, France.,Aix-Marseille Univ, C2VN, INSERM, INRAE, Marseille, France
| | - Mickaël Bobot
- AP-HM, Centre de Néphrologie et Transplantation Rénale, CHU de la Conception, AP-HM, Marseille, France. .,Aix-Marseille Univ, C2VN, INSERM, INRAE, Marseille, France.
| |
Collapse
|
50
|
Kidney Transplant in Fabry Disease: A Revision of the Literature. ACTA ACUST UNITED AC 2020; 56:medicina56060284. [PMID: 32532136 PMCID: PMC7353860 DOI: 10.3390/medicina56060284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Fabry disease is classified as a rare X-linked disease caused by a complete or partial defect of enzyme alpha-galactosidase, due to GLA gene mutations. This disorder leads to intracellular globotriaosylceramide (Gb3) deposition associated with increased Gb3 plasma levels. Most of the symptoms of the disease, involving kidneys, heart and nervous system, result from this progressive Gb3 deposition. The incidence is estimated in 1/50,000 to 1/117,000 in males. Fabry nephropathy begins with microalbuminuria and/or proteinuria, which, in the classic form, appear from childhood. Thus, a progressive decline of renal function can start at a young age, and evolve to kidney failure, requiring dialysis or renal transplantation. Enzyme replacement therapy (ERT), available since 2001 for Fabry disease, has been increasingly introduced into the clinical practice, with overall positive short-term and long-term effects in terms of ventricular hypertrophy and renal function. Kidney transplantation represents a relevant therapeutic option for Fabry nephropathy management, for patients reaching end-stage renal disease, but little is known about long-term outcomes, overall patient survival or the possible role of ERT after transplant. The purpose of this review is to analyze the literature on every aspect related to kidney transplantation in patients with Fabry nephropathy: from the analysis of transplant outcomes, to the likelihood of disease recurrence, up to the effects of ERT and its possible interference with immunosuppression.
Collapse
|