1
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
2
|
Rueda Beltz C, Rojas Figueroa A, Hinestroza Antolinez S, Bastidas A. Effects of progestogens used in menopause hormone therapy on the normal breast and benign breast disease in postmenopausal women. Climacteric 2021; 24:236-245. [PMID: 33733982 DOI: 10.1080/13697137.2021.1879779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Hormone replacement therapy in menopause is used to improve climacteric syndrome in women whose quality of life is affected. However, given the wide variety of progestogens available, it is important to evaluate their differential benign changes (radiological, cellular, and clinical) on the breast. This review aimed to determine the different benign changes of progestogens used in postmenopausal combined hormone therapy on the breast (radiological, cellular, and clinical), in women without mammary pathology, in order to establish their safety profile. A systematic review of the literature was carried out with a balanced search strategy for the identification of relevant references in the MEDLINE, BVSalud, EMBASE, ProQuest, and Cochrane databases until November 2019. The search terms used were 'menopause' or 'hormonal replacement therapy' or 'progestins' or 'estrogen' or 'mastodynia' or 'benign breast disease' or 'mammography'. Data were collected from the 'eligible' articles by two researchers (ARF and SHA), and possible discrepancies in inclusion were resolved by consensus. A total of 1886 articles were identified; 60 full-text articles were reviewed, and 17 articles that met the inclusion criteria were included for the qualitative analysis. In conclusion, combined hormone replacement therapy is associated with benign effects on the breast, such as mastodynia and increased mammographic density.
Collapse
Affiliation(s)
- C Rueda Beltz
- Gynaecology and Obstetrics, Universidad de La Sabana, Chía, Colombia.,Clínica del Country and Clínica La Colina, Bogotá, Colombia
| | - A Rojas Figueroa
- Gynaecology and Obstetrics, Universidad de La Sabana, Chía, Colombia
| | | | - A Bastidas
- Epidemiology, Research Unit, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
3
|
Hilton HN, Clarke CL, Graham JD. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol 2018; 466:2-14. [PMID: 28851667 DOI: 10.1016/j.mce.2017.08.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/11/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer.
Collapse
Affiliation(s)
- Heidi N Hilton
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School - Westmead, The University of Sydney, Westmead, NSW 2145, Australia
| | - Christine L Clarke
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School - Westmead, The University of Sydney, Westmead, NSW 2145, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney Medical School - Westmead, The University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
4
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|
5
|
Huang B, Warner M, Gustafsson JÅ. Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol 2015; 418 Pt 3:240-4. [PMID: 25433206 DOI: 10.1016/j.mce.2014.11.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/24/2022]
Abstract
Excessive exposure to estrogen has long been associated with an increased risk for developing breast cancer and anti-estrogen therapy is the gold standard of care in the treatment of estrogen receptor (ER) α-positive breast cancers. However, there are several mysteries concerning both anti-estrogen, tamoxifen, and estrogen. The most important of these are: (1) some ERα-positive breast cancers do not respond to tamoxifen; (2) some ERα-negative breast cancers do respond to tamoxifen; (3) initial or acquired resistance to tamoxifen occurs with recurrent tumors; (4) estrogen can cause marked tumor regression in long-term tamoxifen-resistant ERα-positive breast cancer. These mysteries indicate that we do not know enough about estrogen signaling to understand the effects of targeting these receptors in cancer. The discovery of ERβ, the second estrogen receptor, has added another level of complexity to estrogen signaling. This review summarizes recent publications and makes an updated portrait of ERα and ERβ in breast carcinogenesis and endocrine cancer therapy.
Collapse
Affiliation(s)
- Bo Huang
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd, Science & Engineering Research Center Bldg 545, Houston, Texas 77204, USA
| | - Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd, Science & Engineering Research Center Bldg 545, Houston, Texas 77204, USA
| | - Jan-Åke Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3605 Cullen Blvd, Science & Engineering Research Center Bldg 545, Houston, Texas 77204, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Novum, Huddinge, Sweden.
| |
Collapse
|
6
|
Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A 2014; 111:1933-8. [PMID: 24449868 DOI: 10.1073/pnas.1323719111] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The role of estrogen receptor (ER) α as a target in treatment of breast cancer is clear, but those of ERβ1 and ERβ2 in the breast remain unclear. We have examined expression of all three receptors in surgically excised breast samples from two archives: (i): 187 invasive ductal breast cancer from a Japanese study; and (ii) 20 lobular and 24 ductal cancers from the Imperial College. Samples contained normal areas, areas of hyperplasia, and in situ and invasive cancer. In the normal areas, ERα was expressed in not more than 10% of epithelium, whereas approximately 80% of epithelial cells expressed ERβ. We found that whereas ductal cancer is a highly proliferative, ERα-positive, ERβ-negative disease, lobular cancer expresses both ERα and ERβ but with very few Ki67-positive cells. ERβ2 was expressed in 32% of the ductal cancers, of which 83% were postmenopausal. In all ERβ2-positive cancers the interductal space was filled with dense collagen, and cell nuclei expressed hypoxia-inducible factor 1α. ERβ2 expression was not confined to malignant cells but was strong in stromal, immune, and endothelial cells. In most of the high-grade invasive ductal cancers neither ERα nor ERβ was expressed, but in the high-grade lobular cancer ERβ was lost and ERα and Ki67 expression were abundant. The data show a clear difference in ER expression between lobular and ductal breast cancer and suggest (i) that tamoxifen may be more effective in late than in early lobular cancer and (ii) a potential role for ERβ agonists in preventing in situ ductal cancers from becoming invasive.
Collapse
|
7
|
Dey P, Barros RPA, Warner M, Ström A, Gustafsson JÅ. Insight into the mechanisms of action of estrogen receptor β in the breast, prostate, colon, and CNS. J Mol Endocrinol 2013; 51:T61-74. [PMID: 24031087 DOI: 10.1530/jme-13-0150] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Estrogen and its receptors (ERs) influence many biological processes in physiology and pathology in men and women. ERs are involved in the etiology and/or progression of cancers of the prostate, breast, uterus, ovary, colon, lung, stomach, and malignancies of the immune system. In estrogen-sensitive malignancies, ERβ usually is a tumor suppressor and ERα is an oncogene. ERβ regulates genes in several key pathways including tumor suppression (p53, PTEN); metabolism (PI3K); survival (Akt); proliferation pathways (p45(Skp2), cMyc, and cyclin E); cell-cycle arresting factors (p21(WAF1), cyclin-dependent kinase inhibitor 1 (CDKN1A)), p27(Kip1), and cyclin-dependent kinases (CDKs); protection from reactive oxygen species, glutathione peroxidase. Because they are activated by small molecules, ERs are excellent targets for pharmaceuticals. ERα antagonists have been used for many years in the treatment of breast cancer and more recently pharmaceutical companies have produced agonists which are very selective for ERα or ERβ. ERβ agonists are being considered for preventing progression of cancer, treatment of anxiety and depression, as anti-inflammatory agents and as agents, which prevent or reduce the severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prasenjit Dey
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, 3605 Cullen Blvd, Science and Engineering Research Center Bldg 545, Houston, Texas 77204-5056, USA Department of Biosciences and Nutrition, Karolinska Institutet, Novum, S-141 57 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
8
|
|