1
|
Varlas VN, Epistatu D, Varlas RG. Emphasis on Early Prenatal Diagnosis and Perinatal Outcomes Analysis of Apert Syndrome. Diagnostics (Basel) 2024; 14:1480. [PMID: 39061616 PMCID: PMC11276282 DOI: 10.3390/diagnostics14141480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Apert syndrome is an inherited condition with autosomal dominant transmission. It is also known as acrocephalosyndactyly type I, being characterized by a syndrome of craniosynostosis with abnormal head shape, facial anomalies (median hypoplasia), and limb deformities (syndactyly, rhizomelic shortening). The association can suspect the prenatal diagnosis of these types of anomalies. The methodology consisted of revising the literature, by searching the PubMed/Medline database in which 27 articles were selected and analyzed, comprising 32 cases regarding the prenatal diagnosis of Apert syndrome. A series of ultrasound parameters, the anatomopathological abnormalities found, the obstetric results, and the genetic tests were followed. The distribution of imaging results (US, MRI) identified in the analyzed cases was as follows: skull-shaped abnormalities were evident in 96.8% of cases, facial abnormalities (hypertelorism 43.7%, midface hypoplasia 25%, proptosis 21.8%), syndactyly in 87.5%, and cardiovascular abnormalities in 9.3%. The anomalies detected by the ultrasound examination of the fetus were confirmed postnatally by clinical or gross evaluation or imaging. The management of these cases requires an early diagnosis, an evaluation of the severity of the cases, and appropriate parental counseling.
Collapse
Affiliation(s)
- Valentin Nicolae Varlas
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, 011132 Bucharest, Romania;
- Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Dragos Epistatu
- Department of Radiology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 17-21 Calea Plevnei Street, 020021 Bucharest, Romania
| | - Roxana Georgiana Varlas
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
2
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Wagner CS, Wietlisbach LE, Kota A, Villavisanis DF, Pontell ME, Barrero CE, Salinero LK, Swanson JW, Taylor JA, Bartlett SP. Genetic Subtypes of Apert Syndrome Are Associated With Differences in Airway Morphology and Early Upper Airway Obstruction. J Craniofac Surg 2023; 34:1999-2003. [PMID: 37582295 DOI: 10.1097/scs.0000000000009583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/30/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Apert syndrome is predominantly caused by 2 paternally inherited gain-of-function mutations in the FGFR2 gene, Pro253Arg, and Ser252Trp. Studies comparing phenotypic features between these 2 mutations have established differences in syndactyly severity and incidence of cleft palate. Obstructive sleep apnea can be debilitating in a subset of patients with Apert syndrome, yet is not well understood. This study aims to determine whether FGFR2 mutations impart differential effects on airway physiology and morphology. METHODS Patients with Apert syndrome and confirmatory molecular testing were reviewed for polysomnography, nasal endoscopy, microlaryngoscopy and bronchoscopy, and computed tomography imaging. Obstructive apnea-hypopnea index and oxygen saturation nadir, nasal airway volumes, choanal cross-sectional area, and midfacial cephalometric dimensions were compared across mutation types. RESULTS Twenty-four patients (13 Ser252Trp, 11 Pro253Arg) were included. Severe obstructive sleep apnea (obstructive apnea-hypopnea index>10) occurred in 8 (62%) patients with Ser252Trp mutations compared with 1 (9%) patient with Pro253Arg mutations ( P =0.009). Computed tomography imaging at 1 year of age demonstrated that nasopharyngeal airway volumes were 5302±1076 mm 3 in the Ser252Trp group and 6832±1414 mm 3 in the Pro253Arg group ( P =0.041). Maxillary length (anterior nasal spine-posterior nasal spine, P =0.026) and basion-anterior nasal spine ( P =0.007) were shorter in patients with Ser252Trp mutations. CONCLUSIONS The findings suggest that the Ser252Trp mutation in Apert syndrome is associated with higher severity obstructive sleep apnea and decreased nasopharyngeal airway volume. Heightened clinical awareness of these associations may inform treatment planning and family counseling.
Collapse
Affiliation(s)
- Connor S Wagner
- Division of Plastic, Reconstructive, and Oral Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dohlman JC, Prabhu SP, Staffa SJ, Kanack MD, Mackinnon S, Warkad VU, Meara JG, Proctor MR, Dagi LR. Orbital and Eyelid Characteristics, Strabismus, and Intracranial Pressure Control in Apert Children Treated by Endoscopic Strip Craniectomy versus Fronto-Orbital Advancement. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4937. [PMID: 37180985 PMCID: PMC10171774 DOI: 10.1097/gox.0000000000004937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 05/16/2023]
Abstract
Apert syndrome is characterized by eyelid dysmorphology, V-pattern strabismus, extraocular muscle excyclorotation, and elevated intracranial pressure (ICP). We compare eyelid characteristics, severity of V-pattern strabismus, rectus muscle excyclorotation, and ICP control in Apert syndrome patients initially treated by endoscopic strip craniectomy (ESC) at about 4 months of age versus fronto-orbital advancement (FOA) performed about 1 year of age. Methods Twenty-five patients treated at Boston Children's Hospital met inclusion criteria for this retrospective cohort study. Primary outcomes were magnitude of palpebral fissure downslanting at 1, 3, and 5 years of age, severity of V-pattern strabismus, rectus muscle excyclorotation, and interventions to control ICP. Results Before craniofacial repair and through 1 year of age, none of the studied parameters differed for FOA versus ESC treated patients. Palpebral fissure downslanting became statistically greater for those treated by FOA by 3 (P < 0.001) and 5 years of age (P = 0.001). Likewise, severity of palpebral fissure downslanting correlated with severity of V-pattern strabismus at 3 (P = 0.004) and 5 (P = 0.002) years of age. Palpebral fissure downslanting and rectus muscle excyclorotation were typically coexistent (P = 0.053). Secondary interventions to control ICP were required in four of 14 patients treated by ESC (primarily FOA) and in two of 11 patients initially treated by FOA (primarily third ventriculostomy) (P = 0.661). Conclusions Apert patients initially treated by ESC had less severe palpebral fissure downslanting and V-pattern strabismus, normalizing their appearance. Thirty percent initially treated by ESC required secondary FOA to control ICP.
Collapse
Affiliation(s)
- Jenny C. Dohlman
- From the Department of Ophthalmology, Boston Children’s Hospital, Boston, Mass
| | - Sanjay P. Prabhu
- Department of Radiology, Boston Children’s Hospital, Boston, Mass
| | - Steven J. Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, Mass
| | - Melissa D. Kanack
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Mass
| | - Sarah Mackinnon
- From the Department of Ophthalmology, Boston Children’s Hospital, Boston, Mass
| | | | - John G. Meara
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Mass
| | - Mark R. Proctor
- Department of Neurosurgery, Boston Children’s Hospital, Boston, Mass
| | - Linda R. Dagi
- From the Department of Ophthalmology, Boston Children’s Hospital, Boston, Mass
| |
Collapse
|
5
|
Zaki HA, Alassaf MS, Babkair HA, Abdel-Latif GA, Jaffar AK, Alolayan AB, Elsayed SAH. Multidisciplinary Rehabilitation Approach to the Maxillo-Facial Complications of Crouson’s Disease: Case Report and Review. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2206300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Craniofacial anomalies present a challenge to all health care practitioners since they necessitate long-term team follow-up, which is difficult to achieve outside of a major center where craniofacial anomalies teams normally collaborate.
Objectives:
The current review with an illustrative case focuses on the representation and review of Crouzon syndrome and its maxillofacial implications. Review of different varieties of gene mutations that produce craniosynostosis syndromes were discussed and focused on seven clinically distinct craniosynostosis syndromes that are precipitated by the mutation in one or more of the fibroblast growth factor receptors genes which affected the maxillofacial region.
Case presentation:
A complete clinical and radiographic case scenario of a patient suffering from Crouzon syndrome was presented, and discussion of the various disciplines and techniques used along the way to achieve the best results, as well as how team collaboration and patient compliance led to the best results were represented. The presented case was treated with orthodontic treatment, Le Fort-I osteotomy, and Le Fort-III osteotomy with extraoral distraction osteogenesis.
Conclusion:
The combination of different orthognathic surgery alternatives (Le Fort-III and Le Fort-I) with distraction osteogenesis and orthodontic treatment produced excellent outcomes with few complications, and the patient was extremely satisfied and cooperative. Early and thorough team-based care for Crouzon syndrome patients should be accessible at specialized craniofacial centers.
Collapse
|
6
|
Influence of Nonsyndromic Bicoronal Synostosis and Syndromic Influences on Orbit and Periorbital Malformation. Plast Reconstr Surg 2022; 149:930e-942e. [PMID: 35286288 DOI: 10.1097/prs.0000000000009051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Oculoorbital disproportion in patients with craniosynostosis has similarities and dissimilarities between syndromic and nonsyndromic cases. The authors hypothesized that these two conditions have specific individual influences as they relate to development of the orbital and periorbital skeletons. METHODS A total of 133 preoperative computed tomography scans (nonsyndromic bicoronal synostosis, n = 38; Apert syndrome bicoronal synostosis subtype, n = 33; Crouzon syndrome bicoronal synostosis subtype, n = 10; controls, n = 52) were included. Craniometric and volumetric analyses related to the orbit and periorbital anatomy were performed. RESULTS Orbital cavity volume was mildly restricted in nonsyndromic bicoronal synostosis (7 percent, p = 0.147), but more so in Apert and Crouzon syndromes [17 percent (p = 0.002) and 21 percent (p = 0.005), respectively]. The sphenoid side angle in Apert syndrome was wider than when compared to Crouzon syndrome (p = 0.043). The ethmoid side angle in Apert patients, however, was narrower (p = 0.066) than that in Crouzon patients. Maxilla anteroposterior length was more restricted in Apert syndrome than Crouzon syndrome (21 percent, p = 0.003) and nonsyndromic cases (26 percent, p < 0.001). The posterior nasal spine position was retruded in Crouzon syndrome (39 percent, p < 0.001), yet the anterior nasal spine position was similar in Apert and Crouzon syndromes. CONCLUSIONS Orbit and periorbital malformation in syndromic craniosynostosis is likely the combined influence of syndromic influences and premature suture fusion. Apert syndrome expanded the anteriorly contoured lateral orbital wall associated with bicoronal synostosis, whereas Crouzon syndrome had more infraorbital rim retrusion, resulting in more severe exorbitism. Apert syndrome developed maxillary hypoplasia, in addition to the maxillary retrusion, observed in Crouzon syndrome and nonsyndromic bicoronal synostosis patients. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, II.
Collapse
|
7
|
Jaruga A, Ksiazkiewicz J, Kuzniarz K, Tylzanowski P. Orofacial Cleft and Mandibular Prognathism-Human Genetics and Animal Models. Int J Mol Sci 2022; 23:ijms23020953. [PMID: 35055138 PMCID: PMC8779325 DOI: 10.3390/ijms23020953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.
Collapse
Affiliation(s)
- Anna Jaruga
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
| | - Jakub Ksiazkiewicz
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Krystian Kuzniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland;
| | - Przemko Tylzanowski
- Laboratory of Molecular Genetics, Department of Biomedical Sciences, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (A.J.); (J.K.)
- Department of Development and Regeneration, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
8
|
Effect of Early Spheno-Occipital Synchondrosis Fusion in Preadolescent Patients With Syndromic Craniosynostosis on Craniofacial Skeletal Patterns: A Preliminary Study Using Cephalometric Analysis. J Craniofac Surg 2021; 33:179-182. [PMID: 34560746 DOI: 10.1097/scs.0000000000008191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT The purpose of this study was to investigate the effects of early spheno-occipital synchondrosis (SOS) fusion in preadolescent patients with syndromic craniosynostosis (SC) on the craniofacial skeletal patterns. Twenty preadolescent SC patients were divided into the fused SOS (FS, n = 10; 8 Crouzon and 2 Apert) and not-fused SOS groups (NFS, n = 10; 9 Crouzon and 1 Apert). Lateral cephalograms (mean age: 9.60 years, cervical vertebral maturation index: stage I and II) were used to investigate the skeletal sagittal (ANB) and vertical patterns (SN-GoMe), upward inclination of the anterior cranial base (ACB; SN-FH), degree of midface hypoplasia (MH, SNA), retrusive position of orbitale (SNO), and forward position of the condyle in relation to sella (saddle angle). Using the ordinal values calculated by ethnic norm (criteria: moderate, over ±1 standard deviation, severe, over ±2 standard deviation), statistical analysis was performed. The FS group showed a higher percentage of severe MH than the NFS group (70% versus 10%, P < 0.05). Although the 2 groups did not differ in the distribution of ANB, SN-GoMe, saddle angle, and SN-FH (all P > 0.05), the FS group showed relatively higher percentages of severe Class III (100% versus 70%), severe hyper-divergent pattern (40% versus 10%), severely forward condyle position (30% versus 0%), and moderate and severe upward anterior cranial base inclination (90% versus 50%) than the NFS group. However, the 2 groups exhibited the same distribution of moderately and severely retrusive orbitale position ([50%, 20%], P > 0.05). Early SOS fusion in preadolescent SC patients might not be related to retrusive orbitale position, but to severe MH.
Collapse
|
9
|
Lu X, Forte AJ, Alperovich M, Alonso N, Persing JA. Does different cranial suture synostosis influence orbit volume and morphology in Apert syndrome? Int J Oral Maxillofac Surg 2021; 51:338-346. [PMID: 34400025 DOI: 10.1016/j.ijom.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This study was performed to compare the orbital and peri-orbital morphological variations in Apert syndrome patients with different cranial vault suture synostosis, so as to provide an anatomic basis for individualized surgical planning. Computed tomography scans of 57 unoperated Apert syndrome patients and 59 controls were subgrouped as follows: type I, bilateral coronal synostosis; type II, pansynostosis; type III, perpendicular combinations of cranial vault suture synostoses. Orbit bony cavity volume was significantly reduced in type I and type II, by 19% (P < 0.001) and 24% (P < 0.001), respectively. However, the reduction of orbital cavity volume in type III did not reach statistical significance. Globe volume projection beyond the orbital rim, however, increased by 76% (P < 0.001) in type III, versus an increase of 54% (P < 0.001) in type I and 53% (P < 0.001) in type II, due to different ethmoid and sphenoid bone malformations. Maxillary bone volume was only significantly reduced in type I bicoronal synostosis (by 24%, P = 0.048). Both type I and type II developed relatively less zygoma and sphenoid bone volume. Different cranial vault suture synostoses have varied influence on peri-orbital development in Apert syndrome. Instead of mitigating the abnormalities resulting from bicoronal synostosis in type I, additional midline suture synostosis worsens the exorbitism due to a more misshaped ethmoid.
Collapse
Affiliation(s)
- X Lu
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, Connecticut, USA.
| | - A J Forte
- Division of Plastic and Reconstructive Surgery, Mayo Clinic Florida, Jacksonville, Florida, USA.
| | - M Alperovich
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, Connecticut, USA.
| | - N Alonso
- Department of Plastic Surgery, University of São Paulo, São Paulo, Brazil.
| | - J A Persing
- Division of Plastic and Reconstructive Surgery, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
10
|
Cephalocranial Disproportionate Fossa Volume and Normal Skull Base Angle in Pfeiffer Syndrome. J Craniofac Surg 2021; 32:581-586. [PMID: 33704985 DOI: 10.1097/scs.0000000000007203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pfeiffer syndrome is a rare syndromic craniosynostosis disorder, with a wide range of clinical manifestations. This study aims to investigate the structural abnormalities of cranial fossa and skull base development in Pfeiffer patients, to provide an anatomic basis for surgical interventions. METHOD Thirty preoperative CT scans of Pfeiffer syndrome patients were compared to 35 normal controls. Subgroup comparisons, related to differing suture synostosis, were performed. RESULTS Overall, the volume of anterior and middle cranial fossae in Pfeiffer patients were increased by 31% (P < 0.001) and 19% (P = 0.004), versus controls. Volume of the posterior fossa in Pfeiffer patients was reduced by 14% (P = 0.026). When only associated with bicoronal synostosis, Pfeiffer syndrome patients developed enlarged anterior (68%, P = 0.001) and middle (40%, P = 0.031) fossae. However, sagittal synostosis cases only developed an enlarged anterior fossa (47%, P < 0.001). The patients with solely bilateral squamosal synostosis, developed simultaneous reduced anterior, middle and posterior cranial fossae volume (all P ≤ 0.002). The overall skull base angulation, measured on both intracranial and subcranial surfaces, grew normally. CONCLUSION Enlarged anterior cranial fossae in Pfeiffer syndrome children is evident, except for the squamosal synostosis cases which developed reduced volume in all fossae. Volume of the middle cranial fossa is influenced by associated cranial vault suture synostosis, specifically, sagittal synostosis cases develop normal middle fossa volume, while the bicoronal cases develop increased middle fossa volume. Posterior cranial fossa development is restricted by shortened posterior cranial base length. Surgical intervention in Pfeiffer syndrome patients optimally should be indexed to different suture synostosis.
Collapse
|
11
|
Lu X, Forte AJ, Junn A, Dinis J, Alperovich M, Alonso N, Persing JA. Orbitofacial morphology changes with different suture synostoses in Crouzon syndrome. J Craniomaxillofac Surg 2021; 50:406-418. [DOI: 10.1016/j.jcms.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022] Open
|
12
|
Lu X, Forte AJ, Park KE, Allam O, Steinbacher DM, Alperovich M, Passos-Bueno MR, Tonello C, Alonso N, Persing JA. Airway Development Relevant to Cranial Vault Suture Synostosis Subtype in Apert Syndrome. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2732501620973030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: Based on an established classification system of Apert syndrome subtypes, we aim to directly analyze the correlation between segmented airway volume changes and different skull suture synostosis, so as to provide individualized surgical planning for each subgroup of Apert patients. Methods: CT scans of 44 unoperated Apert syndrome and 53 controls were included and subgrouped as: type I. Bilateral coronal synostosis; type II. Pansynostosis; type III. Perpendicular combinations of cranial vault synostosis. CT scans were measured using Mimics and 3-matics software. Results: Type I developed a 41% ( P = .116) reduction in the nasal cavity, yet a normal sized pharyngeal airway. The reduced nasal airway was linked to the decreased cross sectional area ( r = 0.598, P = .001), vertical dimension ( r = 0.719, P < .001), and narrower width ( r = 0.727, P < .001). Type II developed proportionally reduced nasal airway and pharyngeal airway volumes (both 47%, P = .113 and P = .041), along with the proportionally restricted cross sectional areas at choana and condylion levels by 62 to 65%. This reduction is related to the cranial base length ( r = 0.712, P = .048), and also cranial base angulation ( r = 0.780, P = .023). Nasal and pharyngeal airway developed normal volume in type III. However, the cross sectional areas at the gonion level diminished by 74% ( P < .001). Conclusion: Airway development is influenced by subtype of Apert suture synostosis. Type II pansynostosis Apert patients developed synchronous reduced nasal and pharyngeal airways, which is correlated with the slightly flattened cranial base. Type I bicoronal patients have a smaller nasal cavity, but normally sized hypopharynx. Yet, type III patients developed normal nasopharyngeal airway volume overall.
Collapse
Affiliation(s)
- Xiaona Lu
- Yale School of Medicine, New Haven, CT, USA
| | | | | | - Omar Allam
- Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Classification of Subtypes of Crouzon Syndrome Based on the Type of Vault Suture Synostosis. J Craniofac Surg 2020; 31:678-684. [PMID: 32068731 DOI: 10.1097/scs.0000000000006173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Patients with Crouzon syndrome develop various types of anatomic deformities due to different forms of craniosynostosis, yet they have similar craniofacial characteristics. However, exact homology is not evident. Different pathology then may be best treated by different forms of surgical technique. Therefore, precise classification of Crouzon syndrome, based on individual patterns of cranial suture involvement is needed. METHODS Ninety-five computed tomography (CT) scans (Crouzon, n = 33; control, n = 62) were included in this study. All the CT scans are divided into 4 types based on premature closure of sutures: class I = coronal and lambdoidal synostosis; class II = sagittal synostosis; class III = pansynostosis; and class IV = "Others." The CT scan anatomy was measured by Materialise software. RESULTS The class III, pansynostosis, is the most prevalent (63.6%). The classes I, III, and IV of Crouzon have significantly shortened entire anteroposterior cranial base length, with the shortest base length in class III. The external cranial measurements in class I show primarily a decreased posterior facial skeleton, while the class III presented with holistic facial skeleton reduction. Class II has the least severe craniofacial malformations, while class III had the most severe. CONCLUSION The morphology of patients with Crouzon syndrome is not identical in both cranial base and facial characteristics, especially when they associated with different subtypes of cranial suture synostosis. The classification of Crouzon syndrome proposed in this study, summarizes the differences among each subgroup of craniosynostosis suture involvement, which, theoretically, may ultimately influence both the timing and type of surgical intervention.
Collapse
|
14
|
What Is the Difference in Cranial Base Morphology in Isolated and Syndromic Bicoronal Synostosis? Plast Reconstr Surg 2020; 146:599-610. [DOI: 10.1097/prs.0000000000007068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Lu X, Forte AJ, Park KE, Allam O, Mozaffari MA, Alperovich M, Steinbacher DM, Alonso N, Persing JA. Sphenoid Bone Structure and Its Influence on the Cranium in Syndromic Versus Nonsyndromic Craniosynostosis. J Craniofac Surg 2020; 32:67-72. [DOI: 10.1097/scs.0000000000006914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Abstract
BACKGROUND Apert syndrome causes normal or enlarged intracranial volume overall as patients grow. This study aimed to trace the segmental anterior, middle, and posterior cranial fossae volume and structural morphology in these patients, to help discern a more focused and individualized surgical treatment plan for patients with Apert syndrome. METHODS This study included 82 preoperative computed tomographic scans (Apert, n = 32; control, n = 50) divided into five age-related subgroups. The scans were measured using image processing and three-dimensional modeling software. RESULTS The middle cranial fossa volume was increased and was the earliest change noted. It was increased by 45 percent (p = 0.023) compared with controls before 6 months of age and remained increased into adulthood (161 percent, p = 0.016), with gradually increasing severity. The anterior and posterior cranial fossae volumes also increased, by 35 percent (p = 0.032) and 39 percent (p = 0.007), respectively. Increased depth of cranial fossae contributed most to the increase in volumes of patients with Apert syndrome, with correlation coefficients of 0.799, 0.908, and 0.888 for anterior, middle, and posterior cranial fossa, respectively. The intracranial volume was increased 12 percent (p = 0.098) across the entire test age range (0 to 26 years old), but only had statistical significance during the age range of 6 to 18 years (22 percent, p = 0.001). CONCLUSIONS Malformation of the middle cranial fossa is an early, perhaps the initial, pivotal cranial morphologic change in Apert syndrome. Increased cranial fossae depth is an inherent characteristic of the maldevelopment. Normalization of cranial volume and circumference overall may not achieve a normal skull structure, as it does not correct regional craniocerebral disproportion.
Collapse
|
17
|
Reply: Airway Analysis in Apert Syndrome. Plast Reconstr Surg 2020; 145:661e-662e. [PMID: 32097354 DOI: 10.1097/prs.0000000000006596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
|