1
|
Luong D, Weisel A, Cohen R, Spector JA, Sapir-Lekhovitser Y. Successful reconstruction of full-thickness skin defects in a swine model using simultaneous split-thickness skin grafting and composite collagen microstructured dermal scaffolds. Wound Repair Regen 2023; 31:576-585. [PMID: 37314212 DOI: 10.1111/wrr.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Reconstitution of normal skin anatomy after full-thickness skin loss may be accomplished using a combination of a dermal regeneration template (DRT) and a split thickness skin graft (STSG). However, because of the relatively low rate of cell infiltration and vascularisation of currently available DRTs, reconstruction is almost always performed in a two-step procedure over the course of several weeks, resulting in multiple dressing changes, prolonged immobilisation and increased chance of infection. To mitigate the potential complications of this prolonged process, the collagen-based dermal template DermiSphere™ was developed and tested in a single-step procedure wherein DermiSphere and STSG were implanted simultaneously. When evaluated in a porcine, full thickness, excisional wound model, DermiSphere successfully supported simultaneous split thickness skin graft take and induced functional neodermal tissue deposition. When compared to a market leading product Integra Bilayer Wound Matrix, which was used in a multistep procedure (STSG placed 14 days after product implantation according to the product IFU), DermiSphere induced a similar moderate and transient inflammatory response that produced similar neodermal tissue maturity, thickness and vascularity, despite being implanted in a single surgical procedure leading to wound closure 2 weeks earlier. These data suggest that DermiSphere may be implanted in a single-step procedure with an STSG, which would significantly shorten the time course required for the reconstruction of both dermal and epidermal components of skin after full thickness loss.
Collapse
Affiliation(s)
- Derek Luong
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Adam Weisel
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Rachael Cohen
- FesariusTherapeutics, Inc., New York City, New York, USA
| | - Jason A Spector
- FesariusTherapeutics, Inc., New York City, New York, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, New York City, New York, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
2
|
De Decker I, Hoeksema H, Verbelen J, De Coninck P, Speeckaert M, De Schepper S, Blondeel P, Pirayesh A, Monstrey S, Claes KEY. A single-stage bilayered skin reconstruction using Glyaderm® as an acellular dermal regeneration template results in improved scar quality: an intra-individual randomized controlled trial. BURNS & TRAUMA 2023; 11:tkad015. [PMID: 37143955 PMCID: PMC10152996 DOI: 10.1093/burnst/tkad015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023]
Abstract
Background Absence of almost the entire reticular dermal layer is inherent to the use of autologous split-thickness skin grafting (STSG) to close full-thickness wounds, often resulting in hypertrophic scars and contractures. Many dermal substitutes have been developed, but unfortunately most have varying results in terms of cosmetic and/or functional improvement as well as patient satisfaction, in addition to high costs. Bilayered skin reconstruction using the human-derived glycerolized acellular dermis (Glyaderm®) has been reported to result in significantly improved scar quality using a two-step procedure. Unlike the necessary two-step procedure for most commercially available dermal substitutes, in this study we aimed to investigate the use of Glyaderm® in a more cost-effective single-stage engrafting. This is a method which, if autografts are available, is preferred by the majority of surgeons given the reduction in costs, hospitalization time and infection rate. Methods A prospective, randomized, controlled, intra-individual, single-blinded study was performed, investigating the simultaneous application of Glyaderm® and STSG vs. STSG alone in full-thickness burns or comparable deep skin defects. During the acute phase, bacterial load, graft take and time to wound closure were assessed and were the primary outcomes. Aesthetic and functional results (secondary outcomes) were evaluated at 3, 6, 9 and 12 months follow-up using subjective and objective scar measurement tools. Biopsies for histological analysis were taken at 3 and 12 months. Results A total of 66 patients representing 82 wound comparisons were included. Graft take (>95%), pain management and healing time were comparable in both groups. At 1 year follow-up, the overall Patient and Observer Scar Assessment Scale assessed by the patient was significantly in favour of sites where Glyaderm® was used. Not infrequently, patients attributed this difference to improved skin sensation. Histological analysis showed the presence of a well-formed neodermis, with donor elastin present for up to 12 months. Conclusions A single-stage bilayered reconstruction with Glyaderm® and STSG results in optimal graft take without loss of Glyaderm® nor the overlaying autografts due to infection. The presence of elastin in the neodermis was demonstrated during long-term follow-up in all but one patient, which is a crucial factor contributing to the significantly improved overall scar quality as evaluated by the blinded patients. Trial registration The trial was registered on clinicaltrials.gov and received the following registration code: NCT01033604.
Collapse
Affiliation(s)
| | - Henk Hoeksema
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Jozef Verbelen
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Petra De Coninck
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie De Schepper
- Department of Dermatology, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Phillip Blondeel
- Burn Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
- Department of Plastic Surgery, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Ali Pirayesh
- Plastic surgeon in private practice in Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
3
|
Palackic A, Duggan RP, Campbell MS, Walters E, Branski LK, Ayadi AE, Wolf SE. The Role of Skin Substitutes in Acute Burn and Reconstructive Burn Surgery: An Updated Comprehensive Review. Semin Plast Surg 2022; 36:33-42. [PMID: 35706557 PMCID: PMC9192152 DOI: 10.1055/s-0042-1743455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractBurns disrupt the protective skin barrier with consequent loss of cutaneous temperature regulation, infection prevention, evaporative losses, and other vital functions. Chronically, burns lead to scarring, contractures, pain, and impaired psychosocial well-being. Several skin substitutes are available and replace the skin and partially restore functional outcomes and improve cosmesis. We performed a literature review to update readers on biologic and synthetic skin substitutes to date applied in acute and reconstructive burn surgery. Improvement has been rapid in the development of skin substitutes in the last decade; however, no available skin substitute fulfills criteria as a perfect replacement for damaged skin.
Collapse
Affiliation(s)
- Alen Palackic
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, Graz, Austria
| | - Robert P. Duggan
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | - Elliot Walters
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Ludwik K. Branski
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Amina El Ayadi
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Steven E. Wolf
- Department of Surgery, Division of Burn and Trauma Surgery, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
4
|
Kemp Bohan PM, Cooper LE, Fletcher JL, Corkins CJ, Natesan S, Aden JK, Carlsson A, Chan RK. Impact of dermal matrix thickness on split-thickness skin graft survival and wound contraction in a single-stage procedure. Int Wound J 2021; 19:370-379. [PMID: 34240793 PMCID: PMC8762550 DOI: 10.1111/iwj.13637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/21/2022] Open
Abstract
Optimal treatment of full‐thickness skin injuries requires dermal and epidermal replacement. To spare donor dermis, dermal substitutes can be used ahead of split‐thickness skin graft (STSG) application. However, this two‐stage procedure requires an additional general anaesthetic, often prolongs hospitalisation, and increases outpatient services. Although a few case series have described successful single‐stage reconstructions, with application of both STSG and dermal substitute at the index operation, we have little understanding of how the physical characteristics of dermal substitutes affects the success of a single‐stage procedure. Here, we evaluated several dermal substitutes to optimise single‐stage skin replacement in a preclinical porcine model. A porcine full‐thickness excisional wound model was used to evaluate the following dermal substitutes: autologous dermal graft (ADG; thicknesses 0.15‐0.60 mm), Integra (0.4‐0.8 mm), Alloderm (0.9‐1.6 mm), and chitosan‐based hydrogel (0.1‐0.2 mm). After excision, each wound was treated with either a dermal substitute followed by STSG or STSG alone (control). Endpoints included graft take at postoperative days (PODs) 7 and 14, wound closure at POD 28, and wound contracture from POD 28‐120. Graft take was highest in the STSG alone and hydrogel groups at POD 14 (86.9% ± 19.5% and 81.3% ± 12.3%, respectively; P < .001). There were no differences in graft take at POD 7 or in wound closure at POD 28, though highest rates of wound closure were seen in the STSG alone and hydrogel groups (93.6% ± 9.1% and 99.8% ± 0.5%, respectively). ADG‐treated wounds demonstrated the least amount of wound contracture at each time point. Increase dermal substitute thickness was associated with worse percent graft take at PODs 14 and 28 (Spearman ρ of −0.50 and −0.45, respectively; P < .001). In this preclinical single‐stage skin reconstruction model, thinner ADG and hydrogel dermal substitutes outperformed thicker dermal substitutes. Both substitute thickness and composition affect treatment success. Further preclinical and clinical studies to optimise this treatment modality are warranted.
Collapse
Affiliation(s)
| | - Laura E Cooper
- United States Army Institute of Surgical Research, San Antonio, Texas, USA
| | - John L Fletcher
- Department of Surgery, Brooke Army Medical Center, San Antonio, Texas, USA
| | | | | | - James K Aden
- Department of Graduate Medical Education, Brooke Army Medical Center, San Antonio, Texas, USA
| | - Anders Carlsson
- United States Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Rodney K Chan
- Department of Surgery, Brooke Army Medical Center, San Antonio, Texas, USA.,United States Army Institute of Surgical Research, San Antonio, Texas, USA
| |
Collapse
|
5
|
Damaraju SM, Mintz BR, Park JG, Gandhi A, Saini S, Molnar JA. Skin substitutes with noncultured autologous skin cell suspension heal porcine full-thickness wounds in a one-stage procedure. Int Wound J 2021; 19:188-201. [PMID: 34036743 PMCID: PMC8684857 DOI: 10.1111/iwj.13615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022] Open
Abstract
Clinical application of skin substitute is typically a two-stage procedure with application of skin substitute matrix to the wound followed by engraftment of a split-thickness skin graft (STSG). This two-stage procedure requires multiple interventions, increasing the time until the wound is epithelialised. In this study, the feasibility of a one-stage procedure by combining bioengineered collagen-chondroitin-6-sulfate (DS1) or decellularised fetal bovine skin substitute (DS2) with autologous skin cell suspension (ASCS) in a porcine full-thickness wound healing model was evaluated. Twelve full-thickness excisional wounds on the backs of pigs received one of six different treatments: empty; ASCS; DS1 with or without ASCS; DS2 with or without ASCS. The ASCS was prepared using a point-of-care device and was seeded onto the bottom side of DS1, DS2, and empty wounds at 80 000 cells/cm2 . Wound measurements and photographs were taken on days 0, 9, 14, 21, 28, 35, and 42 post-wounding. Histological analysis was performed on samples obtained on days 9, 14, 28, and 42. Wounds in the empty group or with ASCS alone showed increased wound contraction, fibrosis, and myofibroblast density compared with other treatment groups. The addition of ASCS to DS1 or DS2 resulted in a marked increase in re-epithelialisation of wounds at 14 days, from 15 ± 11% to 71 ± 20% (DS1 vs DS1 + ASCS) or 28 ± 14% to 77 ± 26 (DS2 vs DS2 + ASCS) despite different mechanisms of tissue regeneration employed by the DS used. These results suggest that this approach may be a viable one-stage treatment in clinical practice.
Collapse
Affiliation(s)
- Sita M Damaraju
- Product Development, Integra LifeSciences, Corp, Princeton, New Jersey, USA
| | - Benjamin R Mintz
- Product Development, Integra LifeSciences, Corp, Princeton, New Jersey, USA
| | - J Genevieve Park
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ankur Gandhi
- Product Development, Integra LifeSciences, Corp, Princeton, New Jersey, USA
| | - Sunil Saini
- Product Development, Integra LifeSciences, Corp, Princeton, New Jersey, USA
| | - Joseph A Molnar
- Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|