Vorobyova V, Vasyliev G, Uschapovskiy D, Lyudmyla K, Skiba M. Green synthesis, characterization of silver nanoparticals for biomedical application and environmental remediation.
J Microbiol Methods 2021;
193:106384. [PMID:
34826520 DOI:
10.1016/j.mimet.2021.106384]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Production of silver nanoparticles (Ag-NPs) to increase photocatalytic activity of commercial TiO2 (P25) and antibacterial activity of surgical sutures was studied. А new method of "green" synthesis of Ag-NPs from aqueous extract of grape skin (oxidation product), which is pre-processed by oxygen and ultrasound is reported. Also, a new method of electrochemical modification of surgical sutures was used. Characterization of Ag-NPs was carried out using energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and UV-visible spectroscopy. Zeta-potential of obtained colloidal solutions indicated the moderate stability of synthesized nanoparticles. The X-ray powder diffraction (XRD) analysis confirmed the crystallographic structure of the synthesized Ag-NPs. The component profile of grape skin extract has been analyzed using HPLC coupled to diode-array detection and tandem mass spectrometry (HPLC-DAD-MS/MS). In this study absorbable sutures were functionalized with biosynthesized AgNPs through an electrochemical and chemical deposition. Morphological analysis of Ag-NPs-coated surgical sutures was performed by SEM and Energy Dispersive X-Ray Spectroscopy (SEM-EDX) in order to evaluate the presence and distribution of silver deposited on the sutures. The sutures demonstrated bacteriostatic and antifungal effects on Gram-positive (Bacillus subtilis), Gram-negative (Escherichia coli) and Candida albicans wound pathogens. The study revealed that electrochemical deposition of Ag-NPs on nylon surgical sutures did not alter the mechanical properties of the sutures but conferred antibacterial properties. The modified TiO2 powders with biosynthesized Ag-NPs were characterized by XRD pattern, SEM, their photocatalytic properties, and their antibacterial activities were studied. The results of the antibacterial activity studies showed that TiO2 modified using green approach possessed higher antibacterial activity against Gram-negative bacteria in comparison with TiO2 modified by the impregnation method.
Collapse