1
|
Wicaksono D, Taslim NA, Lau V, Syahputra RA, Alatas AI, Putra PP, Tallei TE, Tjandrawinata RR, Tsopmo A, Kim B, Nurkolis F. Elucidation of anti-human melanoma and anti-aging mechanisms of compounds from green seaweed Caulerpa racemosa. Sci Rep 2024; 14:27534. [PMID: 39528552 PMCID: PMC11555072 DOI: 10.1038/s41598-024-78464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Human melanoma is linked with aging-related disorders, prompting interest in the development of functional foods derived from natural ingredients to mitigate its incidence. Molecules in green seaweeds such as Caulerpa racemosa can serve this purpose due to their anti-tumor and anti-inflammatory properties. A previous work study compounds profiling has been carried out, and in this research the molecular docking studies targeting receptors associated with melanoma (GRP78, IRE1, BRAF) and aging (mTOR, AMPK, SIRT1) identified four promising compound in an extract of C. racemosa. The current study aims to the mechanism of those compounds at a cellular level using the human A375 (BRAF-V600E mutation) and A375 and B16-F10 cell lines. The MTT assay was used to evaluate the potential of GSCRE compounds against A375 and B16-F10 cell lines, with comparisons made to normal HDFa cell lines. Results indicated that compound C2, also known as Caulersin, demonstrated a significantly different ∆G affinity binding score compared to the control drug Dabrafenib. GSCRE crude extract, particularly C2, showed potential in modulating mTOR, AMPK, and SIRT1 pathways and downregulating GRP78, IRE1, and BRAF signaling (p < 0.05). Interestingly, C2 was less effective in suppressing A375 and B16-F10 cell lines (LD50 C2 < LD50 Dabrafenib/control), with its LD50 value nearly matching that of the Trametinib control in B16-F10 cell lines. Consequently, GSCRE, especially C2 or Caulersin, shows promise as a new molecule for developing functional foods to combat aging and human melanoma. However, further in vivo studies and clinical trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Vincent Lau
- Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Purnawan Pontana Putra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Center for Pharmaceutical and Nutraceutical Research and Policy, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, 12930, Indonesia
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON, K1S 5B6, Canada
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-Ro 26, Dong-Daemun-Gu, Seoul, 05254, South Korea
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia.
- Medical Research Center of Indonesia (MERCIE), Surabaya, 60281, Indonesia.
| |
Collapse
|
2
|
Dumitru AV, Țăpoi DA, Costache M, Ciongariu AM, Ionescu AI, Liscu HD, Alius C, Tampa M, Marin A, Furtunescu AR. Metastatic Nodular Melanoma with Angiosarcomatous Transdifferentiation-A Case Report and Review of the Literature. Diagnostics (Basel) 2024; 14:1323. [PMID: 39001214 PMCID: PMC11240390 DOI: 10.3390/diagnostics14131323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Diagnosing cutaneous melanomas relies mainly on histopathological analysis, which, in selected cases, can be aided by immunohistochemical evaluation of conventional melanocytic markers. Nevertheless, these malignancies, particularly in metastatic settings, may display divergent differentiation with unusual histological and immunohistochemical features. In this context, we present the case of a 65-year-old male diagnosed with typical superficial spreading melanoma who developed recurrence and metastatic lesions featuring angiosarcomatous differentiation. The diagnosis of the initial tumour and the subsequently dedifferentiated lesions was confirmed by ample immunohistochemical analysis, which included several melanocytic markers, as well as mesenchymal and vascular markers. The recurrent tumour and lymph nodes metastases were completely negative for Melan-A and PRAME, and focally positive for SOX10. Additionally, they also displayed diffuse, intense positivity for CD10 and WT1 and focal positivity for CD99, ERB, and CD31. Thus, the diagnosis of primary cutaneous melanoma with recurrent and metastatic divergent angiosarcomatous differentiation was established. This occurrence is particularly rare and can pose important diagnostic challenges. Therefore, in addition to presenting this highly unusual case, we also performed a comprehensive review of the literature on divergent differentiation in melanomas.
Collapse
Affiliation(s)
- Adrian Vasile Dumitru
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.V.D.); (M.C.); (A.M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Dana Antonia Țăpoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.V.D.); (M.C.); (A.M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.V.D.); (M.C.); (A.M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Ana Maria Ciongariu
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.V.D.); (M.C.); (A.M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Andreea Iuliana Ionescu
- Department of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.I.I.); (H.D.L.)
- Department of Medical Oncology, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Horia Dan Liscu
- Department of Oncological Radiotherapy and Medical Imaging, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.I.I.); (H.D.L.)
- Department of Radiotherapy, Colțea Clinical Hospital, 030167 Bucharest, Romania
| | - Catalin Alius
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
- Fourth Department of General Surgery, Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (A.R.F.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| | - Andrei Marin
- Department of Plastic Surgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Andreea Roxana Furtunescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (A.R.F.)
- Department of Dermatology, “Victor Babes” Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania
| |
Collapse
|
3
|
Meevassana J, Mittrakulkij C, Toworrakul P, Saensuk W, Kamolratanakul S, Siritientong T, Ruangritchankul K, Kitkumthorn N. Evaluation of P53 immunostaining in patients with cutaneous melanoma. Biomed Rep 2024; 20:8. [PMID: 38124769 PMCID: PMC10731165 DOI: 10.3892/br.2023.1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
P53 is a tumor suppressor gene that is mutated in numerous types of cancer. The aim of the present study was to determine the frequency of this mutation in cutaneous melanomas and to conduct clinicopathological characteristics and clinical outcome association analyses with the P53 mutation. P53 immunohistochemical staining was used as a surrogate marker for P53 mutation analysis to assess P53 status. In the present study, 50 pathological samples of cutaneous melanoma from 2012 to 2018 at Chulalongkorn University (Bangkok, Thailand), were subjected to anti-P53 immunohistochemistry, followed by an examination of the association between P53 statuses and clinical and pathological characteristics, along with clinical outcomes. A positive staining for anti-P53 antibody was detected in 30% of patients (15/50) with cutaneous melanomas. Positivity was significantly associated with female sex, nodular histological subtype and Breslow level 4. Cox regression analysis revealed that an age >65.5 years and Breslow grade 4 disease were associated with mortality. The Kaplan-Meier curve revealed a shorter duration of recurrence time in the P53 mutation than P53 wild type. In the present study, P53 mutations in specific cases of cutaneous melanoma were identified. Notably, patients who were older and/or had a Breslow score of 4 exhibited an increased risk of mortality. These findings suggested the potential involvement of P53 mutations in cutaneous melanoma, highlighting the necessity for further investigations to improve understanding of their roles.
Collapse
Affiliation(s)
- Jiraroch Meevassana
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanya Mittrakulkij
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ponteera Toworrakul
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wantamol Saensuk
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supitcha Kamolratanakul
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tippawan Siritientong
- Center of Excellence in Burn and Wound Care, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Komkrit Ruangritchankul
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|