1
|
Navarro Y, Makarewicz N, Hinson C, Thawanyarat K, Coleman-Belin J, Loan P, Modi S, Nazerali RS. Red Breast Syndrome-Where Has It Gone?: A Systematic Review of Red Breast Syndrome Incidence Overtime. Ann Plast Surg 2025; 94:243-249. [PMID: 39841901 DOI: 10.1097/sap.0000000000004151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
BACKGROUND Red breast syndrome (RBS) has been noted in past literature as a possible complication of implant-based breast reconstruction (IBBR) with the use of acellular dermal matrices (ADMs). Since its first appearance in 2009, RBS has drawn growing medical attention with reported incidence ranging from 7%-9%. There has been a noted decrease in the emergence of RBS despite its inclusion among the analyzed complications in a number of studies. This systematic review aims to evaluate the trend in reported RBS incidence over time and appropriately determine an accurate incidence of RBS from reported literature since the emergence of the phenomena. METHODS A systematic literature review was performed in July 2023 that analyzed the incidence of RBS among retrospective cohort studies on complication rates of IBBR with ADM. Patient demographics, RBS incidence rates, and all-cause complications were captured. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-analysis guidelines and Methodological Index for Nonrandomized Studies criteria was used to assess study quality. RESULTS From 2009 to 2023, a total of 48 studies (n = 6251) met inclusion criteria of which 35 studies from 2017 to 2023 were not already included in a prior systematic review (n = 5246). The mean incidence of RBS in the unreported studies was 2.88% with a weighted mean of 3.22%. Analysis of the trend in RBS over time shows an increasing reported incidence rate from 2009 with a peak in incidence between 2016 and 2017, followed by a steady decline through 2022. Twenty-six of the studies were published from 2016 to 2019. CONCLUSIONS The incidence of RBS among prior studies and systematic reviews has fluctuated significantly since its initial emergence in 2009. Reported incidence rates have been on the decline since 2018 with a true weighted incidence of 3.22% from analysis of recent reported studies. Potential causes for the decline in incidence include practice changes in ADM preparation, changes in the ADM brand used for IBBR, and improved categorization of RBS compared to cellulitis/infection. Despite more robust criteria for diagnosis, no consensus for management has yet been established.
Collapse
Affiliation(s)
- Yelissa Navarro
- From the Medical College of Georgia at Augusta University, Augusta, GA
| | - Nathan Makarewicz
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Chandler Hinson
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, AL
| | | | | | - Phillip Loan
- From the Medical College of Georgia at Augusta University, Augusta, GA
| | - Suraj Modi
- From the Medical College of Georgia at Augusta University, Augusta, GA
| | - Rahim S Nazerali
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
2
|
Berkane Y, Oubari H, van Dieren L, Charlès L, Lupon E, McCarthy M, Cetrulo CL, Bertheuil N, Uygun BE, Smadja DM, Lellouch AG. Tissue engineering strategies for breast reconstruction: a literature review of current advances and future directions. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:15. [PMID: 38304901 PMCID: PMC10777243 DOI: 10.21037/atm-23-1724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 02/03/2024]
Abstract
Background and Objective Mastectomy is a primary treatment for breast cancer patients, and both autologous and implant-based reconstructive techniques have shown excellent results. In recent years, advancements in bioengineering have led to a proliferation of innovative approaches to breast reconstruction. This article comprehensively explores the promising perspectives offered by bioengineering and tissue engineering in the field of breast reconstruction. Methods A literature review was conducted between April and June 2023 on PubMed and Google Scholar Databases. All English and French articles related to bioengineering applied to the field of breast reconstruction were included. We used the Evidence-Based Veterinary Medicine Association (EBVM) Toolkit 14 checklist for narrative reviews as a quality assurance measure and the Scale for the Assessment of Narrative Review Articles (SANRA) tool to self-assess our methodology. Key Content and Findings Over 130 references related to breast bioengineering were included. The analysis revealed four key applications: enhancing the quality of the skin envelope, improving the viability of fat grafting, creating breast shape and volume via bio-printing, and optimizing nipple reconstruction through engineering techniques. The primary identified approaches revolved around establishing structural support and enhancing cellular viability. Structural techniques predominantly involved the implementation of 3D printed, decellularized, or biocompatible material scaffolds. Meanwhile, promoting cellular content trophicity primarily focused on harnessing the regenerative potential of adipose-derived stem cells (ADSCs) and increasing the tissue's survivability and cell trophicity. Conclusions Tissue and bioengineering hold immense promise in the field of breast reconstruction, offering a diverse array of approaches. By combining existing techniques with novel advancements, they have the potential to significantly enhance the therapeutic options available to plastic and reconstructive surgeons.
Collapse
Affiliation(s)
- Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Haizam Oubari
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Grenoble University Hospital Center, Grenoble, France
| | - Loïc van Dieren
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic Surgery, University of Antwerp, Wilrijk, Belgium
| | - Laura Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Elise Lupon
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Plastic and Reconstructive Surgery, Pasteur 2 Hospital, University Côte d’Azur, Sophia Antipolis, Nice, France
| | - Michelle McCarthy
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Curtis L. Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
| | - Nicolas Bertheuil
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes, Rennes, France
- Unité Mixte de Recherche UMR 1236 Suivi Immunologique des Thérapeutiques Innovantes, INSERM and University of Rennes, Rennes, France
| | - Basak E. Uygun
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David M. Smadja
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, Paris, France
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children’s Boston, Boston, MA, USA
- Unité Mixte de Recherche UMR-S 1140 Innovative Therapies in Haemostasis, INSERM and University of Paris, Paris, France
| |
Collapse
|