1
|
Hershkovich L, Cotler SJ, Shekhtman L, Bazinet M, Anderson M, Kuhns M, Cloherty G, Vaillant A, Dahari H. HBV serum RNA kinetics during nucleic acid polymers based therapy predict functional cure. Antiviral Res 2024; 234:106061. [PMID: 39706300 DOI: 10.1016/j.antiviral.2024.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Serum HBV-RNA is proposed to be a circulating marker of cccDNA transcriptional activity in hepatocytes. The combination of tenofovir-disoproxil-fumarate (TDF) and pegylated-interferon-alpha-2a (pegIFN) with nucleic-acid polymer (NAP) treatment was associated with a relatively high rate of functional cure (FC) 48 weeks after discontinuation of all therapy. We aim to characterize HBV RNA kinetics under TDF and pegIFN ± NAP combination therapies. Forty participants with chronic HBV in the REP401 phase-II clinical trial received 48 weeks of triple combination therapy with NAPs, pegIFN, and TDF. For 20 participants, triple combination therapy (TDF + pegIFN + NAPs) followed 24 weeks of TDF. For 20 other participants, triple combination therapy followed 24 weeks of TDF monotherapy and 24 weeks of dual therapy (TDF + pegIFN). The Abbott RUO assay for HBV RNA (LLoQ = 1.65 logU/mL) was performed every 4 weeks. Previously unrecognized HBV RNA kinetic patterns were identified with dual/triple therapy including (i) no change (ii) an increase followed by a new elevated plateau (only under dual therapy) and (iii) a transient increase followed by a spontaneous decline. All participants establishing a new elevated HBV RNA plateau level experienced a subsequent monophasic decline following the introduction of NAPs. Failure to reach HBV RNA LLoQ by 16 weeks of triple therapy had a negative predictive value of 100% for FC. The median HBV RNA half-life for participants in the virological-rebound group was significantly (p = 0.01) longer than in the partial and FC groups (5.7 vs 2.7 weeks, respectively). Achieving partial/functional cure is associated with a shorter HBV RNA half-life, which could reflect faster inactivation of cccDNA transcriptional activity.
Collapse
Affiliation(s)
- Leeor Hershkovich
- Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Scott J Cotler
- Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Louis Shekhtman
- Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA; Department of Information Science, Bar-Ilan University, Ramat Gan, Israel
| | - Michel Bazinet
- Replicor Inc., 6100 Royalmount Ave., Montreal, Quebec, H4P 2R2, Canada
| | | | | | | | - Andrew Vaillant
- Replicor Inc., 6100 Royalmount Ave., Montreal, Quebec, H4P 2R2, Canada.
| | - Harel Dahari
- Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
2
|
Ciupe SM, Dahari H, Ploss A. Mathematical Models of Early Hepatitis B Virus Dynamics in Humanized Mice. Bull Math Biol 2024; 86:53. [PMID: 38594319 PMCID: PMC11003933 DOI: 10.1007/s11538-024-01284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP). Moreover, we validated the immune models against sHBV and HBsAg experimental data from mice engrafted with HEP and human immune system (HEP/HIS). As expected, the model that does not include adaptive immune responses matches the observed high sHBV and HBsAg concentrations in all HEP mice. By contrast, while all immune response models predict reduction in sHBV and HBsAg concentrations in HEP/HIS mice, the Akaike Information Criterion cannot discriminate between non-cytolytic cure (resulting in a class of cells refractory to reinfection) and antiviral block functions (of up to 99 % viral production 1-3 weeks following peak viral load). We can, however, reject cytolytic killing, as it can only match the sHBV and HBsAg data when we predict unrealistic levels of hepatocyte loss.
Collapse
Affiliation(s)
- Stanca M Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Harel Dahari
- Division of Hepatology, Department of Medicine, Loyola University, Chicago, IL, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation to analyze extracellular viral markers. PLoS Comput Biol 2024; 20:e1011238. [PMID: 38466770 PMCID: PMC10957078 DOI: 10.1371/journal.pcbi.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, United States of America
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
4
|
Kasianchuk N, Dobrowolska K, Harkava S, Bretcan A, Zarębska-Michaluk D, Jaroszewicz J, Flisiak R, Rzymski P. Gene-Editing and RNA Interference in Treating Hepatitis B: A Review. Viruses 2023; 15:2395. [PMID: 38140636 PMCID: PMC10747710 DOI: 10.3390/v15122395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis B virus (HBV) continues to cause substantial health and economic burdens, and its target of elimination may not be reached in 2030 without further efforts in diagnostics, non-pharmaceutical prevention measures, vaccination, and treatment. Current therapeutic options in chronic HBV, based on interferons and/or nucleos(t)ide analogs, suppress the virus replication but do not eliminate the pathogen and suffer from several constraints. This paper reviews the progress on biotechnological approaches in functional and definitive HBV treatments, including gene-editing tools, i.e., zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9, as well as therapeutics based on RNA interference. The advantages and challenges of these approaches are also discussed. Although the safety and efficacy of gene-editing tools in HBV therapies are yet to be demonstrated, they show promise for the revitalization of a much-needed advance in the field and offer viral eradication. Particular hopes are related to CRISPR/Cas9; however, therapeutics employing this system are yet to enter the clinical testing phases. In contrast, a number of candidates based on RNA interference, intending to confer a functional cure, have already been introduced to human studies. However, larger and longer trials are required to assess their efficacy and safety. Considering that prevention is always superior to treatment, it is essential to pursue global efforts in HBV vaccination.
Collapse
Affiliation(s)
- Nadiia Kasianchuk
- Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland
| | | | - Sofiia Harkava
- Junior Academy of Sciences of Ukraine, Regional Branch in Dnipro, 49000 Dnipro, Ukraine;
| | - Andreea Bretcan
- National College “Ienăchiță Văcărescu”, 130016 Târgoviște, Romania;
| | - Dorota Zarębska-Michaluk
- Department of Infectious Diseases and Allergology, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, 41-902 Bytom, Poland;
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, 15-540 Białystok, Poland;
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
5
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|