1
|
Current and Emerging Therapies for Atherosclerotic Cardiovascular Disease Risk Reduction in Hypertriglyceridemia. J Clin Med 2023; 12:jcm12041382. [PMID: 36835917 PMCID: PMC9962307 DOI: 10.3390/jcm12041382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Hypertriglyceridemia (HTG) is a prevalent medical condition in patients with cardiometabolic risk factors and is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD), if left undiagnosed and undertreated. Current guidelines identify HTG as a risk-enhancing factor and, as a result, recommend clinical evaluation and lifestyle-based interventions to address potential secondary causes of elevated triglyceride (TG) levels. For individuals with mild to moderate HTG at risk of ASCVD, statin therapy alone or in combination with other lipid-lowering medications known to decrease ASCVD risk are guideline-endorsed. In addition to lifestyle modifications, patients with severe HTG at risk of acute pancreatitis may benefit from fibrates, mixed formulation omega-3 fatty acids, and niacin; however, evidence does not support their use for ASCVD risk reduction in the contemporary statin era. Novel therapeutics including those that target apoC-III and ANGPTL3 have shown to be safe, well-tolerated, and effective for lowering TG levels. Given the growing burden of cardiometabolic disease and risk factors, public health and health policy strategies are urgently needed to enhance access to effective pharmacotherapies, affordable and nutritious food options, and timely health care services.
Collapse
|
2
|
Genetic Spectrum of Familial Hypercholesterolaemia in the Malaysian Community: Identification of Pathogenic Gene Variants Using Targeted Next-Generation Sequencing. Int J Mol Sci 2022; 23:ijms232314971. [PMID: 36499307 PMCID: PMC9736953 DOI: 10.3390/ijms232314971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is caused by mutations in lipid metabolism genes, predominantly in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin-type 9 (PCSK9) and LDL receptor adaptor protein 1 (LDLRAP1). The prevalence of genetically confirmed FH and the detection rate of pathogenic variants (PV) amongst clinically diagnosed patients is not well established. Targeted next-generation sequencing of LDLR, APOB, PCSK9 and LDLRAP1 was performed on 372 clinically diagnosed Malaysian FH subjects. Out of 361 variants identified, 40 of them were PV (18 = LDLR, 15 = APOB, 5 = PCSK9 and 2 = LDLRAP1). The majority of the PV were LDLR and APOB, where the frequency of both PV were almost similar. About 39% of clinically diagnosed FH have PV in PCSK9 alone and two novel variants of PCSK9 were identified in this study, which have not been described in Malaysia and globally. The prevalence of genetically confirmed potential FH in the community was 1:427, with a detection rate of PV at 0.2% (12/5130). About one-fourth of clinically diagnosed FH in the Malaysian community can be genetically confirmed. The detection rate of genetic confirmation is similar between potential and possible FH groups, suggesting a need for genetic confirmation in index cases from both groups. Clinical and genetic confirmation of FH index cases in the community may enhance the early detection of affected family members through family cascade screening.
Collapse
|
3
|
Firus Khan AY, Ramli AS, Abdul Razak S, Mohd Kasim NA, Chua YA, Ul-Saufie AZ, Jalaludin MA, Nawawi H. The Mala ysian HEalth and Well Being Assessmen T (MyHEBAT) Study Protocol: An Initiation of a National Registry for Extended Cardiovascular Risk Evaluation in the Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811789. [PMID: 36142062 PMCID: PMC9517557 DOI: 10.3390/ijerph191811789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Cardiovascular disease (CVD) has been a burden to many developing countries for decades, including Malaysia. Although various steps have been taken to prevent and manage CVD, it remains the leading cause of morbidity and mortality. The rising prevalence of CVD risk factors such as hypertension, hypercholesterolaemia, diabetes, overweight and obesity is the main driving force behind the CVD epidemic. Therefore, a nationwide health study coined as the Malaysian Health and Wellbeing Assessment (MyHEBAT) was designed. It aimed to investigate the prevalence of CVD and the associated risk factors in the community across Malaysia. The MyHEBAT study recruited participants (18-75 years old) through community health screening programmes from 11 states in Malaysia. The MyHEBAT study was further divided into two sub-studies, namely, the Cardiovascular Risk Epidemiological Study (MyHEBAT-CRES) and the MyHEBAT Familial Hypercholesterolaemia Study (MyHEBAT-FH). These studies assessed the prevalence of CVD risk factors and the prevalence of FH in the community, respectively. The data garnered from the MyHEBAT study will provide information for healthcare providers to devise better prevention and clinical practice guidelines for managing CVD in Malaysia.
Collapse
Affiliation(s)
- Al’aina Yuhainis Firus Khan
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Anis Safura Ramli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Departments of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Suraya Abdul Razak
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Departments of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- Cardio Vascular and Lungs Research Institute (CaVaLRI), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- UiTM Al-Sultan Abdullah Hospital, Puncak Alam 42300, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| | - Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
| | - Ahmad Zia Ul-Saufie
- Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Mohd Amin Jalaludin
- Department of Otorhinolaringology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh 47000, Selangor, Malaysia
- UiTM Al-Sultan Abdullah Hospital, Puncak Alam 42300, Selangor, Malaysia
- Department of Pathology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh 47000, Selangor, Malaysia
| |
Collapse
|
4
|
Keathley J, Garneau V, Marcil V, Mutch DM, Robitaille J, Rudkowska I, Sofian GM, Desroches S, Vohl MC. Nutrigenetics, omega-3 and plasma lipids/lipoproteins/apolipoproteins with evidence evaluation using the GRADE approach: a systematic review. BMJ Open 2022; 12:e054417. [PMID: 35193914 PMCID: PMC8867311 DOI: 10.1136/bmjopen-2021-054417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Despite the uptake of nutrigenetic testing through direct-to-consumer services and healthcare professionals, systematic reviews determining scientific validity are limited in this field. The objective of this review was to: retrieve, synthesise and assess the quality of evidence (confidence) for nutrigenetic approaches related to the effect of genetic variation on plasma lipid, lipoprotein and apolipoprotein responsiveness to omega-3 fatty acid intake. DESIGN A systematic review was conducted using three search engines (Embase, Web of Science and Medline) for articles published up until 1 August 2020. We aimed to systematically search, identify (select) and provide a narrative synthesis of all studies that assessed nutrigenetic associations/interactions for genetic variants (comparators) influencing the plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population). We further aimed to assess the overall quality of evidence for specific priority nutrigenetic associations/interactions based on the following inclusion criteria: nutrigenetic associations/interactions reported for the same genetic variants (comparators) influencing the same plasma lipid, lipoprotein and/or apolipoprotein response (outcomes) to omega-3 fatty acid intake (intervention/exposure) in humans-both paediatric and adult populations (population) in at least two independent studies, irrespective of the findings. Risk of bias was assessed in individual studies. Evidence was evaluated using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach with a modification to further consider biological plausibility. RESULTS Out of 1830 articles screened, 65 met the inclusion criteria for the narrative synthesis (n=23 observational, n=42 interventional); of these, 25 met the inclusion criteria for GRADE evidence evaluation. Overall, current evidence is insufficient for gene-diet associations related to omega-3 fatty acid intake on plasma apolipoproteins, total cholesterol, high-density lipoprotein-cholesterol, low-density lipoprotein (LDL)-cholesterol and LDL particle size. However, there is strong (GRADE rating: moderate quality) evidence to suggest that male APOE-E4 carriers (rs429358, rs7412) exhibit significant triglyceride reductions in response to omega-3-rich fish oil with a dose-response effect. Moreover, strong (GRADE rating: high quality) evidence suggests that a 31-SNP nutrigenetic risk score can predict plasma triglyceride responsiveness to omega-3-rich fish oil in adults with overweight/obesity from various ethnicities. CONCLUSIONS Most evidence in this area is weak, but two specific nutrigenetic interactions exhibited strong evidence, with generalisability limited to specific populations. PROSPERO REGISTRATION NUMBER CRD42020185087.
Collapse
Affiliation(s)
- Justine Keathley
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Véronique Garneau
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Valérie Marcil
- Department of Nutrition, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Sainte-Justine University Health Centre, Montréal, Quebec, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Julie Robitaille
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Iwona Rudkowska
- Department of Kinesiology, Université Laval, Quebec City, Quebec, Canada
- Endocrinology and Nephrology Unit, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | | | - Sophie Desroches
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| | - Marie-Claude Vohl
- Université Laval, Centre Nutrition, Santé et Société (NUTRISS), Institut sur la Nutrition et les Aliments Fonctionnels (INAF) Quebec, Quebec City, Quebec, Canada
- Universite Laval, School of Nutrition, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Chua YA, Razman AZ, Ramli AS, Mohd Kasim NA, Nawawi H. Familial Hypercholesterolaemia in the Malaysian Community: Prevalence, Under-Detection and Under-Treatment. J Atheroscler Thromb 2021; 28:1095-1107. [PMID: 33455995 PMCID: PMC8560842 DOI: 10.5551/jat.57026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022] Open
Abstract
AIM Familial hypercholesterolaemia (FH) is the most common autosomal dominant lipid disorder, leading to severe hypercholesterolaemia. Early detection and treatment with lipid-lowering medications may reduce the risk of premature coronary artery disease in FH patients. However, there is scarcity of data on FH prevalence, detection rate, treatment and control with lipid-lowering therapy in the Malaysian community. METHODS Community participants (n=5130) were recruited from all states in Malaysia. Blood samples were collected for lipid profiles and glucose analyses. Personal and family medical histories were collected by means of assisted questionnaire. Physical examination for tendon xanthomata and premature corneal arcus were conducted on-site. FH were clinically screened using Dutch Lipid Clinic Network Criteria. RESULTS Out of 5130 recruited community participants, 55 patients were clinically categorised as potential (Definite and Probable) FH, making the prevalence FH among the community as 1:100. Based on current total population of Malaysia (32 million), the estimated number of FH patients in Malaysia is 320,000, while the detection rates are estimated as 0.5%. Lipid-lowering medications were prescribed to 54.5% and 30.5% of potential and possible FH patients, respectively, but none of them achieved the therapeutic LDL-c target. CONCLUSION Clinically diagnosed FH prevalence in Malaysian population is much higher than most of the populations in the world. At community level, FH patients are clinically under-detected, with majority of them not achieving target LDL-c level for high-risk patients. Therefore, public health measures are warranted for early detection and treatment, to enhance opportunities for premature CAD prevention.
Collapse
Affiliation(s)
- Yung-An Chua
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Aimi Zafira Razman
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Anis Safura Ramli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Departments of Primary Care Medicine, Universiti Teknologi MARA, Selayang, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Pathology, Faculty of Medicine, Universiti Teknologi MARA, Selayang, Selangor, Malaysia
| | - Hapizah Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Pathology, Faculty of Medicine, Universiti Teknologi MARA, Selayang, Selangor, Malaysia
- Specialist Lipid and Coronary Risk Prevention Clinics, Clinical Training Centre, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia is a common dyslipidemia associated with an increased risk of cardiovascular disease and pancreatitis. Severe hypertriglyceridemia may sometimes be a monogenic condition. However, in the vast majority of patients, hypertriglyceridemia is due to the cumulative effect of multiple genetic risk variants along with lifestyle factors, medications, and disease conditions that elevate triglyceride levels. In this review, we will summarize recent progress in the understanding of the genetic basis of hypertriglyceridemia. RECENT FINDINGS More than 300 genetic loci have been identified for association with triglyceride levels in large genome-wide association studies. Studies combining the loci into polygenic scores have demonstrated that some hypertriglyceridemia phenotypes previously attributed to monogenic inheritance have a polygenic basis. The new genetic discoveries have opened avenues for the development of more effective triglyceride-lowering treatments and raised interest towards genetic screening and tailored treatments against hypertriglyceridemia. The discovery of multiple genetic loci associated with elevated triglyceride levels has led to improved understanding of the genetic basis of hypertriglyceridemia and opened new translational opportunities.
Collapse
Affiliation(s)
- Germán D. Carrasquilla
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Malene Revsbech Christiansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Mærsk Building, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Yang Q, Pu N, Li XY, Shi XL, Chen WW, Zhang GF, Hu YP, Zhou J, Chen FX, Li BQ, Tong ZH, Férec C, Cooper DN, Chen JM, Li WQ. Digenic Inheritance and Gene-Environment Interaction in a Patient With Hypertriglyceridemia and Acute Pancreatitis. Front Genet 2021; 12:640859. [PMID: 34040631 PMCID: PMC8143378 DOI: 10.3389/fgene.2021.640859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The etiology of hypertriglyceridemia (HTG) and acute pancreatitis (AP) is complex. Herein, we dissected the underlying etiology in a patient with HTG and AP. The patient had a 20-year history of heavy alcohol consumption and an 8-year history of mild HTG. He was hospitalized for alcohol-triggered AP, with a plasma triglyceride (TG) level up to 21.4 mmol/L. A temporary rise in post-heparin LPL concentration (1.5–2.5 times of controls) was noted during the early days of AP whilst LPL activity was consistently low (50∼70% of controls). His TG level rapidly decreased to normal in response to treatment, and remained normal to borderline high during a ∼3-year follow-up period during which he had abstained completely from alcohol. Sequencing of the five primary HTG genes (i.e., LPL, APOC2, APOA5, GPIHBP1 and LMF1) identified two heterozygous variants. One was the common APOA5 c.553G > T (p.Gly185Cys) variant, which has been previously associated with altered TG levels as well as HTG-induced acute pancreatitis (HTG-AP). The other was a rare variant in the LPL gene, c.756T > G (p.Ile252Met), which was predicted to be likely pathogenic and found experimentally to cause a 40% loss of LPL activity without affecting either protein synthesis or secretion. We provide evidence that both a gene-gene interaction (between the common APOA5 variant and the rare LPL variant) and a gene-environment interaction (between alcohol and digenic inheritance) might have contributed to the development of mild HTG and alcohol-triggered AP in the patient, thereby improving our understanding of the complex etiology of HTG and HTG-AP.
Collapse
Affiliation(s)
- Qi Yang
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Na Pu
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Yao Li
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiao-Lei Shi
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei-Wei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guo-Fu Zhang
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yue-Peng Hu
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Zhou
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fa-Xi Chen
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Bai-Qiang Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhi-Hui Tong
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Claude Férec
- Univ Brest, INSERM, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, Brest, France
| | - David N Cooper
- School of Medicine, Institute of Medical Genetics, Cardiff University, Cardiff, United Kingdom
| | - Jian-Min Chen
- Univ Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Wei-Qin Li
- Department of Critical Care Medicine, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
8
|
Limonova AS, Ershova AI, Meshkov AN, Kiseleva AV, Divashuk MG, Kutsenko VA, Drapkina OM. Case Report: Hypertriglyceridemia and Premature Atherosclerosis in a Patient With Apolipoprotein E Gene ε 2ε 1 Genotype. Front Cardiovasc Med 2021; 7:585779. [PMID: 33537346 PMCID: PMC7847930 DOI: 10.3389/fcvm.2020.585779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
We present a case of a 40-year-old male with premature atherosclerosis, with evidence of both eruptive and tendinous xanthomas, which could imply an increase in both low-density lipoprotein (LDL) and triglyceride (TG) levels. However, his LDL was 2.08 mmol/l, TG -11.8 mmol/l on rosuvastatin 20 mg. Genetic evaluation was performed using a custom panel consisting of 25 genes and 280 variants responsible for lipid metabolism. A rare ε2ε1 genotype of apolipoprotein E was detected. The combination of clinical manifestations and genetic factors in this patient leads to the diagnosis of familial dysbetalipoproteinemia. Implementation of genetic testing into routine clinical practice could not only improve disease diagnostics and management, but also help prevent their development.
Collapse
Affiliation(s)
- Alena S Limonova
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexandra I Ershova
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey N Meshkov
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna V Kiseleva
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Mikhail G Divashuk
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,Kurchatov Genomics Center-All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Vladimir A Kutsenko
- Biostatistics Laboratory, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia.,Department of Theory of Probability, Department of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
| | - Oxana M Drapkina
- National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Huang CC, Charng MJ. Genetic Diagnosis of Familial Hypercholesterolemia in Asia. Front Genet 2020; 11:833. [PMID: 32793292 PMCID: PMC7393677 DOI: 10.3389/fgene.2020.00833] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disease with an incidence of about 1 in 200-500 individuals. Genetic mutations markedly elevate low-density lipoprotein cholesterol and atherosclerotic cardiovascular disease (ASCVD) in FH patients. With advances in clinical diagnosis and genetic testing, more genetic mutations have been detected, including those in low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and so on. Globally, most FH patients remain undiagnosed, untreated, or inappropriately treated. Recently, there was a Global Call to Action by the Global Familial Hypercholesterolemia Community to reduce the health burden of FH. Asia, despite being the most populous continent with half of the global population, has low FH detection rates compared to Western countries. Therefore, we aimed to review the current status of FH genetic diagnosis in Asia to understand the gaps in FH diagnosis and management in this region.
Collapse
Affiliation(s)
- Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Min-Ji Charng
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|