1
|
Hopman LHGA, van der Lingen ACJ, van Pouderoijen N, Krabbenborg J, Mulder MJ, Rijnierse MT, Bhagirath P, Robbers LFHJ, van Rossum AC, van Halm VP, Götte MW, Allaart CP. Cardiac Magnetic Resonance Imaging-Derived Left Atrial Characteristics in Relation to Atrial Fibrillation Detection in Patients With an Implantable Cardioverter-Defibrillator. J Am Heart Assoc 2023; 12:e028014. [PMID: 37489727 PMCID: PMC10492968 DOI: 10.1161/jaha.122.028014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/24/2023] [Indexed: 07/26/2023]
Abstract
Background Among patients with an implantable cardioverter-defibrillator, a high prevalence of atrial fibrillation (AF) is present. Identification of AF predictors in this patient group is of clinical importance to initiate appropriate preventive therapeutic measures to reduce the risk of AF-related complications. This study assesses whether cardiac magnetic resonance imaging-derived atrial characteristics are associated with AF development in patients with a dual-chamber implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator, as detected by the cardiac implantable electronic device. Methods and Results This single-center retrospective study included 233 patients without documented AF history at the moment of device implantation (dual-chamber implantable cardioverter-defibrillator [63.5%] or cardiac resynchronization therapy defibrillator [36.5%]). All patients underwent cardiac magnetic resonance imaging before device implantation. Cardiac magnetic resonance-derived features of left atrial (LA) remodeling were evaluated in all patients. Detection of AF episodes was based on cardiac implantable electronic device interrogation. During a median follow-up of 6.1 years, a newly diagnosed AF episode was detected in 88 of the 233 (37.8%) patients with an ICD. In these patients, increased LA volumes and impaired LA function (LA emptying fraction and LA strain) were found as compared with patients without AF during follow-up. However, a significant association was only found in patients with dilated cardiomyopathy and not in patients with ischemic cardiomyopathy. Conclusions LA remodeling characteristics were associated with development of AF in patients with dilated cardiomyopathy but not patients with ischemic cardiomyopathy, suggesting different mechanisms of AF development in ischemic cardiomyopathy and dilated cardiomyopathy. Assessment of LA remodeling before device implantation might identify high-risk patients for AF.
Collapse
Affiliation(s)
- Luuk H. G. A. Hopman
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Anne‐Lotte C. J. van der Lingen
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Nikki van Pouderoijen
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Judith Krabbenborg
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Mark J. Mulder
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Mischa T. Rijnierse
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Pranav Bhagirath
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Lourens F. H. J. Robbers
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Albert C. van Rossum
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Vokko P. van Halm
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Marco J. W. Götte
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| | - Cornelis P. Allaart
- Department of Cardiology, Amsterdam UMCVrije Universiteit Amsterdam, Amsterdam Cardiovascular SciencesAmsterdamthe Netherlands
| |
Collapse
|
2
|
Świerżyńska E, Oręziak A, Główczyńska R, Rossillo A, Grabowski M, Szumowski Ł, Caprioglio F, Sterliński M. Rate-Responsive Cardiac Pacing: Technological Solutions and Their Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031427. [PMID: 36772467 PMCID: PMC9920425 DOI: 10.3390/s23031427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/12/2023]
Abstract
Modern cardiac pacemakers are equipped with a function that allows the heart rate to adapt to the current needs of the patient in situations of increased demand related to exercise and stress ("rate-response" function). This function may be based on a variety of mechanisms, such as a built-in accelerometer responding to increased chest movement or algorithms sensing metabolic demand for oxygen, analysis of intrathoracic impedance, and analysis of the heart rhythm (Q-T interval). The latest technologies in the field of rate-response functionality relate to the use of an accelerometer in leadless endocavitary pacemakers; in these devices, the accelerometer enables mapping of the mechanical wave of the heart's work cycle, enabling the pacemaker to correctly sense native impulses and stimulate the ventricles in synchrony with the cycles of atria and heart valves. Another modern system for synchronizing pacing rate with the patient's real-time needs requires a closed-loop system that continuously monitors changes in the dynamics of heart contractions. This article discusses the technical details of various solutions for detecting and responding to situations related to increased oxygen demand (e.g., exercise or stress) in implantable pacemakers, and reviews the results of clinical trials regarding the use of these algorithms.
Collapse
Affiliation(s)
- Ewa Świerżyńska
- Department of Arrhythmia, The Cardinal Stefan Wyszynski National Institute of Cardiology, 04-628 Warsaw, Poland
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence:
| | - Artur Oręziak
- Department of Arrhythmia, The Cardinal Stefan Wyszynski National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Renata Główczyńska
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Antonio Rossillo
- Department of Cardiology, San Bortolo Hospital, 36100 Vicenza, Italy
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Łukasz Szumowski
- Department of Arrhythmia, The Cardinal Stefan Wyszynski National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | - Maciej Sterliński
- Department of Arrhythmia, The Cardinal Stefan Wyszynski National Institute of Cardiology, 04-628 Warsaw, Poland
| |
Collapse
|
3
|
Chang X, Li Y, Liu J, Wang Y, Guan X, Wu Q, Zhou Y, Zhang X, Chen Y, Huang Y, Liu R. ß-tubulin contributes to Tongyang Huoxue decoction-induced protection against hypoxia/reoxygenation-induced injury of sinoatrial node cells through SIRT1-mediated regulation of mitochondrial quality surveillance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154502. [PMID: 36274412 DOI: 10.1016/j.phymed.2022.154502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND TYHX-Tongyang Huoxue decoction has been used clinically for nearly 40 years. The ingredients of TYHX are Radix Astragali (Huangqi), Red Ginseng (Hongshen), Rehmannia Glutinosa (Dihuang), Common Yam Rhizome (Shanyao) and Cassia-bark-tree Bark (Rougui). Our previous experiments confirmed that TYHX can protect sinoatrial node cells. However, its mechanism of action is not completely understood yet. PURPOSE The present study aimed to determine the protective effects of TYHX against Sinus node cell injury under hypoxic stress and elucidate the underlying mechanisms of protection. METHODS Through RNA sequencing analysis and network pharmacology analysis, we found significant differences in mitochondrial-related genes before and after hypoxia-mimicking SNC, resolved the main regulatory mechanism of TYHX. Through the intervention of TYHX on SNC, a series of detection methods such as laser confocal, fluorescence co-localization, mitochondrial membrane potential and RT-PCR. The regulatory effect of TYHX on β-tubulin in sinoatrial node cells was verified by in vitro experiments. The mechanism of action of TYHX and its active ingredient quercetin to maintain mitochondrial homeostasis and protect sinoatrial node cells through mitophagy, mitochondrial fusion/fission and mitochondrial biosynthesis was confirmed. RESULTS Through RNA sequencing analysis, we found that there were significant differences in mitochondrial related genes before and after SNC was modeled by hypoxia. Through pharmacological experiments, we showed that TYHX could inhibit the migration of Drp1 to mitochondria, inhibit excessive mitochondrial fission, activate mitophagy and increase the mitochondrial membrane potential. These protective effects were mainly mediated by β-tubulin. Furthermore, the active component quercetin in TYHX could inhibit excessive mitochondrial fission through SIRT1, maintain mitochondrial energy metabolism and protect SNCs. Our results showed that protection of mitochondrial function through the maintenance of β-tubulin and activation of SIRT1 is the main mechanism by which TYHX alleviates hypoxic stress injury in SNCs. The regulatory effects of TYHX and quercetin on mitochondrial quality surveillance are also necessary. Our findings provide empirical evidence supporting the use of TYHX as a targeted treatment for sick sinus syndrome. CONCLUSION Our data indicate that TYHX exerts protective effects against sinus node cell injury under hypoxic stress, which may be associated with the regulation of mitochondrial quality surveillance (MQS) and inhibition of mitochondrial homeostasis-mediated apoptosis.
Collapse
Affiliation(s)
- Xing Chang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yukun Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinfeng Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanli Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xuanke Guan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yutong Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinai Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yao Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yu Huang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ruxiu Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Thiyagarajah A, Lau DH, Sanders P. Atrial fibrillation and conduction system disease: the roles of catheter ablation and permanent pacing. J Interv Card Electrophysiol 2018; 52:395-402. [PMID: 30074119 DOI: 10.1007/s10840-018-0429-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022]
Abstract
Atrial fibrillation (AF) and diseases of the cardiac conduction system frequently co-exist, and interactions between these rhythm disturbances can adversely impact patient outcomes. Concurrent AF and sinus node disease often manifests as the tachy-brady syndrome wherein the underlying sinus node dysfunction can pose a challenge to AF management. Similarly, the combination of AF and left bundle branch block increases mortality in individuals with co-existent heart failure and hampers effective delivery of cardiac resynchronization therapy. A thorough understanding of the therapeutic interventions available for these conditions, including the role of catheter ablation and permanent pacemaker programming, is crucial for optimal management in affected patients.
Collapse
Affiliation(s)
- Anand Thiyagarajah
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
5
|
Pott A, Bock S, Berger IM, Frese K, Dahme T, Keßler M, Rinné S, Decher N, Just S, Rottbauer W. Mutation of the Na +/K +-ATPase Atp1a1a.1 causes QT interval prolongation and bradycardia in zebrafish. J Mol Cell Cardiol 2018; 120:42-52. [PMID: 29750993 DOI: 10.1016/j.yjmcc.2018.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 02/01/2023]
Abstract
The genetic underpinnings that orchestrate the vertebrate heart rate are not fully understood yet, but of high clinical importance, since diseases of cardiac impulse formation and propagation are common and severe human arrhythmias. To identify novel regulators of the vertebrate heart rate, we deciphered the pathogenesis of the bradycardia in the homozygous zebrafish mutant hiphop (hip) and identified a missense-mutation (N851K) in Na+/K+-ATPase α1-subunit (atp1a1a.1). N851K affects zebrafish Na+/K+-ATPase ion transport capacity, as revealed by in vitro pump current measurements. Inhibition of the Na+/K+-ATPase in vivo indicates that hip rather acts as a hypomorph than being a null allele. Consequently, reduced Na+/K+-ATPase function leads to prolonged QT interval and refractoriness in the hip mutant heart, as shown by electrocardiogram and in vivo electrical stimulation experiments. We here demonstrate for the first time that Na+/K+-ATPase plays an essential role in heart rate regulation by prolonging myocardial repolarization.
Collapse
Affiliation(s)
- Alexander Pott
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Sarah Bock
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Karen Frese
- Department of Internal Medicine III, Heidelberg University Medical Center, Heidelberg, Germany
| | - Tillman Dahme
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Mirjam Keßler
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
6
|
Li Y, Zhang X, Zhang C, Zhang X, Li Y, Qi Z, Szeto C, Tang M, Peng Y, Molkentin JD, Houser SR, Xie M, Chen X. Increasing T-type calcium channel activity by β-adrenergic stimulation contributes to β-adrenergic regulation of heart rates. J Physiol 2018; 596:1137-1151. [PMID: 29274077 PMCID: PMC5878229 DOI: 10.1113/jp274756] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/13/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Cav3.1 T-type Ca2+ channel current (ICa-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/β-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to β-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by β-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. ICa-T in sinoatrial nodal cells can be upregulated by β-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α1G ) T-type Ca2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the β-adrenergic system (SAS) is unclear. In the present study, L- (ICa-L ) and T-type (ICa-T ) Ca2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. ICa-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after ISO; TG SANCs had similar basal beating rates as control SANCs probably as a result of decreased ICa-L but a greater response to ISO than control SANCs. ICa-T in SANCs was significantly increased by ISO. ICa-T upregulation by β-adrenergic stimulation contributes to HR and conduction regulation by the SAS. TTCC can be a target for slowing the HR.
Collapse
MESH Headings
- Adrenergic Agents/pharmacology
- Animals
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/pathology
- Calcium Channels, T-Type/physiology
- Heart Rate/drug effects
- Heart Rate/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Receptors, Adrenergic, beta/metabolism
- Signal Transduction
- Sinoatrial Node/cytology
- Sinoatrial Node/drug effects
- Sinoatrial Node/metabolism
Collapse
Affiliation(s)
- Yingxin Li
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Xiaoxiao Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubei Provincial Key Laboratory of Molecular ImagineWuhanChina
| | - Chen Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Xiaoying Zhang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Ying Li
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
- The General Hospital of The PLA Rocket ForceBeijingChina
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of TraumaThird Military Medical UniversityChongqingChina
| | - Zhao Qi
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Christopher Szeto
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Mingxin Tang
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Yizhi Peng
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of TraumaThird Military Medical UniversityChongqingChina
| | - Jeffery D. Molkentin
- Howard Hughes Medical Institute & Cincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Steven R. Houser
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubei Provincial Key Laboratory of Molecular ImagineWuhanChina
| | - Xiongwen Chen
- Cardiovascular Research Center and Department of PhysiologyTemple University School of Medicine3500 North Broad StreetPhiladelphiaPAUSA
| |
Collapse
|
7
|
Gallagher C, Lau DH, Sanders P. Reducing Risk of Dementia in AF-Is Oral Anticoagulation the Key? Mayo Clin Proc 2018; 93:127-129. [PMID: 29329797 DOI: 10.1016/j.mayocp.2017.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Celine Gallagher
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
8
|
Chen JY, Liu JH, Wu HDI, Lin KH, Chang KC, Liou YM. Transforming Growth Factor-β1 T869C Gene Polymorphism Is Associated with Acquired Sick Sinus Syndrome via Linking a Higher Serum Protein Level. PLoS One 2016; 11:e0158676. [PMID: 27380173 PMCID: PMC4933337 DOI: 10.1371/journal.pone.0158676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/20/2016] [Indexed: 12/19/2022] Open
Abstract
Background Familial sick sinus syndrome is associated with gene mutations and dysfunction of ion channels. In contrast, degenerative fibrosis of the sinus node tissue plays an important role in the pathogenesis of acquired sick sinus syndrome. There is a close relationship between transforming growth factor-β1 mediated cardiac fibrosis and acquired arrhythmia. It is of interest to examine whether transforming growth factor-β1 is involved in the pathogenesis of acquired sick sinus syndrome. Methods Overall, 110 patients with acquired SSS and 137 age/gender-matched controls were screened for transforming growth factor-β1 and cardiac sodium channel gene polymorphisms using gene sequencing or restriction fragment length polymorphism methods. An enzyme-linked immunosorbent assay was used to determine the serum level of transforming growth factor-β1. Results Two transforming growth factor-β1 gene polymorphisms (C-509T and T+869C) and one cardiac sodium channel gene polymorphism (H588R) have been identified. The C-dominant CC/CT genotype frequency of T869C was significantly higher in acquired sick sinus syndrome patients than in controls (OR 2.09, 95% CI 1.16–3.75, P = 0.01). Consistently, the level of serum transforming growth factor-β1 was also significantly greater in acquired sick sinus syndrome group than in controls (5.3±3.4 ng/ml vs. 3.7±2.4 ng/ml, P = 0.01). In addition, the CC/CT genotypes showed a higher transforming growth factor-β1 serum level than the TT genotype (4.25 ± 2.50 ng/ml vs. 2.71± 1.76 ng/ml, P = 0.028) in controls. Conclusion Transforming growth factor-β1 T869C polymorphism, correlated with high serum transforming growth factor-β1 levels, is associated with susceptibility to acquired sick sinus syndrome.
Collapse
Affiliation(s)
- Jan-Yow Chen
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Jiung-Hsiun Liu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hung Lin
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiology, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Aristizábal JM, Restrepo A, Uribe W, Marín JE, Velásquez JE, Duque M. «Las otras» bradicardias. REVISTA COLOMBIANA DE CARDIOLOGÍA 2015. [DOI: 10.1016/j.rccar.2015.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Verkerk AO, van Borren MMGJ, van Ginneken ACG, Wilders R. Ca(2+) cycling properties are conserved despite bradycardic effects of heart failure in sinoatrial node cells. Front Physiol 2015; 6:18. [PMID: 25698973 PMCID: PMC4313601 DOI: 10.3389/fphys.2015.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In animal models of heart failure (HF), heart rate decreases due to an increase in intrinsic cycle length (CL) of the sinoatrial node (SAN). Pacemaker activity of SAN cells is complex and modulated by the membrane clock, i.e., the ensemble of voltage gated ion channels and electrogenic pumps and exchangers, and the Ca(2+) clock, i.e., the ensemble of intracellular Ca(2+) ([Ca(2+)]i) dependent processes. HF in SAN cells results in remodeling of the membrane clock, but few studies have examined its effects on [Ca(2+)]i homeostasis. METHODS SAN cells were isolated from control rabbits and rabbits with volume and pressure overload-induced HF. [Ca(2+)]i concentrations, and action potentials (APs) and Na(+)-Ca(2+) exchange current (INCX) were measured using indo-1 and patch-clamp methodology, respectively. RESULTS The frequency of spontaneous [Ca(2+)]i transients was significantly lower in HF SAN cells (3.0 ± 0.1 (n = 40) vs. 3.4 ± 0.1 Hz (n = 45); mean ± SEM), indicating that intrinsic CL was prolonged. HF slowed the [Ca(2+)]i transient decay, which could be explained by the slower frequency and reduced sarcoplasmic reticulum (SR) dependent rate of Ca(2+) uptake. Other [Ca(2+)]i transient parameters, SR Ca(2+) content, INCX density, and INCX-[Ca(2+)]i relationship were all unaffected by HF. Combined AP and [Ca(2+)]i recordings demonstrated that the slower [Ca(2+)]i transient decay in HF SAN cells may result in increased INCX during the diastolic depolarization, but that this effect is likely counteracted by the HF-induced increase in intracellular Na(+). β-adrenergic and muscarinic stimulation were not changed in HF SAN cells, except that late diastolic [Ca(2+)]i rise, a prominent feature of the Ca(2+) clock, is lower during β-adrenergic stimulation. CONCLUSIONS HF SAN cells have a slower [Ca(2+)]i transient decay with limited effects on pacemaker activity. Reduced late diastolic [Ca(2+)]i rise during β-adrenergic stimulation may contribute to an impaired increase in intrinsic frequency in HF SAN cells.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Marcel M G J van Borren
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Clinical Chemistry and Haematology, Rijnstate Hospital Arnhem, Netherlands
| | - Antoni C G van Ginneken
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Ronald Wilders
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
11
|
Pathak R, Lau DH, Mahajan R, Sanders P. Structural and Functional Remodeling of the Left Atrium: Clinical and Therapeutic Implications for Atrial Fibrillation. J Atr Fibrillation 2013; 6:986. [PMID: 28496919 DOI: 10.4022/jafib.986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most commonly encountered arrhythmia in clinical practice. Despite advances in our understanding of the pathophysiology of this complex arrhythmia, current therapeutic options remain suboptimal. This review aimed to delineate the atrial structural and functional remodeling leading to the perpetuation of AF. We explored the complex changes seen in the atria in various substrates for AF and the therapeutic options available to prevent these changes or for reverse remodeling. Here we also highlighted the emerging role of aggressive risk factor management aimed at the arrhythmogenic atrial substrate to prevent or retard AF progression.
Collapse
Affiliation(s)
- Rajeev Pathak
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders (CHRD), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
12
|
Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D'Souza A, Fraser JF, Inada S, Logantha SJRJ, Monfredi O, Morris GM, Moorman AFM, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther 2013; 139:260-88. [PMID: 23612425 DOI: 10.1016/j.pharmthera.2013.04.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 01/01/2023]
Abstract
It is now over 100years since the discovery of the cardiac conduction system, consisting of three main parts, the sinus node, the atrioventricular node and the His-Purkinje system. The system is vital for the initiation and coordination of the heartbeat. Over the last decade, immense strides have been made in our understanding of the cardiac conduction system and these recent developments are reviewed here. It has been shown that the system has a unique embryological origin, distinct from that of the working myocardium, and is more extensive than originally thought with additional structures: atrioventricular rings, a third node (so called retroaortic node) and pulmonary and aortic sleeves. It has been shown that the expression of ion channels, intracellular Ca(2+)-handling proteins and gap junction channels in the system is specialised (different from that in the ordinary working myocardium), but appropriate to explain the functioning of the system, although there is continued debate concerning the ionic basis of pacemaking. We are beginning to understand the mechanisms (fibrosis and remodelling of ion channels and related proteins) responsible for dysfunction of the system (bradycardia, heart block and bundle branch block) associated with atrial fibrillation and heart failure and even athletic training. Equally, we are beginning to appreciate how naturally occurring mutations in ion channels cause congenital cardiac conduction system dysfunction. Finally, current therapies, the status of a new therapeutic strategy (use of a specific heart rate lowering drug) and a potential new therapeutic strategy (biopacemaking) are reviewed.
Collapse
|
13
|
Abstract
Each normal heart beat is triggered by an electrical impulse emitted from a group of specialized cardiomyocytes that together form the sinoatrial node (SAN). In this issue of the JCI, Swaminathan and colleagues demonstrate a new molecular mechanism that can disrupt the normal beating of the heart: angiotensin II - typically found in increased levels in heart failure and hypertension - oxidizes and activates Ca2+/calmodulin-dependent kinase II via NADPH oxidase activation, causing SAN cell death. The loss of SAN cells produces an electrical imbalance termed the "source-sink mismatch," which may contribute to the SAN dysfunction that affects millions of people later in life and complicates a number of heart diseases.
Collapse
|