1
|
Li K, Bai Y, Wang J, Ren L, Mo A, Liu R, Wang Y, Zhou F, Pei W, Shi X. Targeting STK26 and ATG4B: miR-22-3p as a modulator of autophagy and tumor progression in HCC. Transl Oncol 2025; 51:102214. [PMID: 39608212 PMCID: PMC11635773 DOI: 10.1016/j.tranon.2024.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Drug-induced protective autophagy significantly affects the efficacy of anticancer therapies. Enhancing tumor cell sensitivity to treatment by inhibiting autophagy is essential for effective cancer therapy. Our study, analyzing data from The Cancer Genome Atlas (TCGA) public database, HCC cell lines, and liver cancer tissue samples, found that miR-22-3p is expressed at low levels in HCC and is significantly associated with clinicopathological features and patient prognosis. Functional assays and xenograft models demonstrated that miR-22-3p suppresses HCC progression. Moreover, Western blot analysis and the LC3B double reporter (mRFP1-EGFP-LC3B) confirmed that miR-22-3p inhibits autophagy in HCC cells. Further investigation identified Sterile 20-like kinase 26 (STK26) and Autophagy Related 4B Cysteine Peptidase (ATG4B) as targets of miR-22-3p. STK26, which is overexpressed in HCC, promotes malignant characteristics such as proliferation, migration, and invasion. Additionally, STK26 facilitates autophagy in HCC by phosphorylating ATG4B at serine 383. miR-22-3p inhibits autophagy by targeting STK26 and ATG4B, thus preventing the phosphorylation of ATG4B at serine 383. Sorafenib treatment increases the levels and phosphorylation of STK26 and ATG4B, inducing protective autophagy. The combination of miR-22-3p with sorafenib demonstrated enhanced antitumor effects both in vitro and in vivo. In conclusion, our findings suggest that miR-22-3p inhibits HCC progression by regulating the expression of STK26 and ATG4B, potentially through autophagy inhibition, thereby increasing sensitivity to sorafenib treatment. This offers a new therapeutic approach for effective HCC.
Collapse
Affiliation(s)
- Kai Li
- Department of Radiotherapy and Oncology, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui Province, PR China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Yaping Bai
- College of Life Sciences, Anhui Normal University, 1 Beijing East Road, Wuhu City, Anhui Province, 241000, PR China
| | - Jingtong Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Li Ren
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Anqi Mo
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Rong Liu
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Yun Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China
| | - Fengcang Zhou
- Basic Teaching Department of Morphology Teaching and Research Section, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241002, PR China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu 241003, PR China.
| | - Xiuhua Shi
- Department of Radiotherapy and Oncology, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui Province, PR China.
| |
Collapse
|
2
|
Zhu W, Fan C, Liu B, Qin J, Fan A, Yang Z, Zhang H, Zhou W. Therapeutic targets for hepatocellular carcinoma identified using proteomics and Mendelian randomization. J Gastroenterol Hepatol 2025; 40:282-293. [PMID: 39477889 DOI: 10.1111/jgh.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) emerges as a formidable malignancy marked by elevated morbidity and mortality rates, coupled with a dismal prognosis. The revelation of gene-protein associations has presented an avenue for the exploration of novel therapeutic targets. METHODS Pooling plasma proteomic data (seven published GWAS) and HCC data (DeCODE cohort), we applied MR to identify potential drug targets, which were further validated in the FinnGen cohort and UK Biobank. Subsequent colocalization and summary-data-based Mendelian randomization analyses were performed for potential associations of this set of proteins. In addition, enrichment information pathways were investigated in depth by KEGG pathway analysis, single-cell sequencing, PPI and DGIdb, ChEMBL, and DrugBank database analyses, specific cell types enriched for expression were identified, interacting proteins were identified, and finally, druggability was assessed. RESULTS In summary, the levels of 10 proteins are linked to HCC risk. Elevated levels of TFPI2 as well as decreased levels of ALDH1A1, KRT18, ADAMTS13, TIMD4, SCLY, HRSP12, TNFAIP6, FTCD, and DDC are associated with increased HCC risk. Notably, HRSP12 show the strongest evidence. These genes are primarily expressed in specific cell types within the HCC TME. Moreover, intricate protein-protein interactions, involving key players like ALDH1A1 and RIDA, ALDH1A1 and DDC, and ALDH1A1 and KRT18, contribute significantly to the amino acid metabolism and dopaminergic neurogenesis pathway. Proteins such as ALDH1A1, KRT18, TFPI2, and DDC are promising targets for HCC therapy and broader cancer drug development. Targeting these proteins offers substantial potential in advancing HCC treatment strategies. CONCLUSIONS This research delineates 10 protein biomarkers linked to HCC risk and offers novel perspectives on its etiology, as well as promising avenues for the screening of HCC protein markers and therapeutic agents.
Collapse
Affiliation(s)
- Weixiong Zhu
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chuanlei Fan
- Nanchang Central Hospital, Jiangxi Provincial University of Traditional Chinese Medicine, nanchang, 330000, China
| | - Bo Liu
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Jianqi Qin
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Aodong Fan
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zengxi Yang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
4
|
Shi Z, Li J, Ding J, Zhang Y, Min W, Zhu Y, Hou Y, Yuan K, Sun C, Wang X, Shen H, Wang L, Liang SQ, Kuang W, Wang X, Yang P. ADAR1 is required for acute myeloid leukemia cell survival by modulating post-transcriptional Wnt signaling through impairing miRNA biogenesis. Leukemia 2024:10.1038/s41375-024-02500-7. [PMID: 39702795 DOI: 10.1038/s41375-024-02500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Recent extensive studies on the genomic and molecular profiles of acute myeloid leukemia (AML) have expanded the treatment options, including, a range of compounds represented by fms-like tyrosine kinase 3 and isocitrate dehydrogenase 1/2 inhibitors. However, despite this progress, further treatments for AML are still required. Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to play an important oncogenic role in many cancers, but its involvement in AML progression remains underexplored. In this study, we demonstrated that ADAR1 was overexpressed in AML and served as a crucial oncogenic target. Loss of ADAR1 inhibited the Wnt signaling pathway, blocked AML cell proliferation, and induced apoptosis. Importantly, we demonstrate that ADAR1, as an RNA-binding protein, interacts with pri-miR-766 independently of its editing function, regulating the maturation of miR-766-3p and enhancing the expression of WNT5B. Genetic inhibition or use of the ADAR1 inhibitor ZYS-1 significantly suppressed AML cell growth both in vitro and in vivo. Overall, these results elucidated the tumorigenic mechanism of ADAR1 and validated it as a potential drug target in AML.
Collapse
Affiliation(s)
- Zhongrui Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiwen Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuejiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shun-Qing Liang
- Department of Medicine, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| | - Wenbin Kuang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Xiao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| | - Peng Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Yang C, Geng H, Yang X, Ji S, Liu Z, Feng H, Li Q, Zhang T, Zhang S, Ma X, Zhu C, Xu N, Xia Y, Li Y, Wang H, Yu C, Du S, Miao B, Xu L, Wang H, Cao Y, Li B, Zhu L, Tang X, Zhang H, Zhu C, Huang Z, Leng C, Hu H, Chen X, Yuan S, Jin G, Bernards R, Sun C, Zheng Q, Qin W, Gao Q, Wang C. Targeting the immune privilege of tumor-initiating cells to enhance cancer immunotherapy. Cancer Cell 2024; 42:2064-2081.e19. [PMID: 39515328 DOI: 10.1016/j.ccell.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/09/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Tumor-initiating cells (TICs) possess the ability to evade anti-tumor immunity, potentially explaining many failures of cancer immunotherapy. Here, we identify CD49f as a prominent marker for discerning TICs in hepatocellular carcinoma (HCC), outperforming other commonly used TIC markers. CD49f-high TICs specifically recruit tumor-promoting neutrophils via the CXCL2-CXCR2 axis and create an immunosuppressive milieu in the tumor microenvironment (TME). Reciprocally, the neutrophils reprogram nearby tumor cells toward a TIC phenotype via secreting CCL4. These cells can evade CD8+ T cell-mediated killing through CCL4/STAT3-induced and CD49f-stabilized CD155 expression. Notably, while aberrant CD155 expression contributes to immune suppression, it also represents a TIC-specific vulnerability. We demonstrate that either CD155 deletion or antibody blockade significantly enhances sensitivity to anti-PD-1 therapy in preclinical HCC models. Our findings reveal a new mechanism of tumor immune evasion and provide a rationale for combining CD155 blockade with anti-PD-1/PD-L1 therapy in HCC.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Haigang Geng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China; Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuhui Ma
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuchen Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nuo Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Xia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongye Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chune Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Beiping Miao
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Botai Li
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyu Tang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Leng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Hu
- Department of Oncology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute & Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Tian C, Li C, Wang J, Liu Y, Gao J, Hong X, Gu F, Zhang K, Hu Y, Fan H, Liu L, Zeng Y. ADAR1 enhances tumor proliferation and radioresistance in non-small cell lung cancer by interacting with Rad18. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01012-x. [PMID: 39570561 DOI: 10.1007/s13402-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
PURPOSE Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated. METHODS The protein expression was detected by immunohistochemistry and Western Blot, while the mRNA expression was measured by RT-qPCR. The tumor growth was evaluated by CCK8, colony formation assays, EdU assay, and in-vivo mouse model. γ-H2AX foci formation, neutral comet tailing assay, and clonogenic cell survival assay were performed to determine the DNA damage and radiosensitivity. RNA-seq was conducted to identify the main downstream effector. The interaction between ADAR1 and Rad18 was examined by immunofluorescence and co-immunoprecipitation. RESULTS We reported that ADAR1 was upregulated and correlated with poor prognosis in non-small cell lung cancer (NSCLC). In addition, we demonstrated that silencing ADAR1 significantly impaired tumor growth and improved tumor sensitivity to radiotherapy in vitro and in vivo. Mechanistically, we found that Rad18, which has been established as a versatile modulator of DNA repair, was the major downstream effector of ADAR1. ADAR1 not only regulated Rad18 mRNA expression by E2F3 but also colocalized and interacted with Rad18. Finally, our rescue experiments demonstrated that ADAR1's protumorigenic functions were partially dependent on Rad18. CONCLUSION Our results revealed the role of ADAR1 in cooperation with Rad18 in modulating oncogenesis and radioresistance in NSCLC for the first time, and suggested the therapeutic potential of targeting ADAR1 in overcoming radioresistance.
Collapse
Affiliation(s)
- Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaqi Gao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongjie Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hu Bei, 430022, China.
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
7
|
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, Song G, Pan L, Xu K, Wang C. Lactylome Analysis Unveils Lactylation-Dependent Mechanisms of Stemness Remodeling in the Liver Cancer Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405975. [PMID: 39099416 PMCID: PMC11481176 DOI: 10.1002/advs.202405975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.
Collapse
Affiliation(s)
- Fan Feng
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Jiaqin Wu
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Qingjia Chi
- Department of Engineering Structure and MechanicsSchool of ScienceWuhan University of TechnologyWuhan430070China
| | - Shunshun Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Wanqian Liu
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Li Yang
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Guanbin Song
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir AreaChongqing Engineering Research Center of Antitumor Natural DrugsChongqing Three Gorges Medical CollegeChongqing400030China
| | - Kang Xu
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
- Center of Traditional Chinese Medicine Modernization for Liver DiseasesHubei University of Chinese MedicineWuhan430065China
| | - Chunli Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
| |
Collapse
|
8
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
9
|
Sun F, Ding Z, Shao F, Gao X, Tian H, Zhang X, Chen H, Wang C. Albumin-Based MUC13 Peptide Nanomedicine Suppresses Liver Cancer Stem Cells via JNK-ERK Signaling Pathway-Mediated Autophagy Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38968-38978. [PMID: 39024013 DOI: 10.1021/acsami.4c06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.
Collapse
Affiliation(s)
- Fen Sun
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaqing Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
10
|
Loh JJ, Ma S. Hallmarks of cancer stemness. Cell Stem Cell 2024; 31:617-639. [PMID: 38701757 DOI: 10.1016/j.stem.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024]
Abstract
Cancer stemness is recognized as a key component of tumor development. Previously coined "cancer stem cells" (CSCs) and believed to be a rare population with rigid hierarchical organization, there is good evidence to suggest that these cells exhibit a plastic cellular state influenced by dynamic CSC-niche interplay. This revelation underscores the need to reevaluate the hallmarks of cancer stemness. Herein, we summarize the techniques used to identify and characterize the state of these cells and discuss their defining and emerging hallmarks, along with their enabling and associated features. We also highlight potential future directions in this field of research.
Collapse
Affiliation(s)
- Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Synthetic Chemistry and Chemical Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China; Centre for Translational and Stem Cell Biology, Hong Kong Science and Technology Park, Hong Kong SAR, China.
| |
Collapse
|
11
|
Zhang D, Zhu L, Gao Y, Wang Y, Li P. RNA editing enzymes: structure, biological functions and applications. Cell Biosci 2024; 14:34. [PMID: 38493171 PMCID: PMC10944622 DOI: 10.1186/s13578-024-01216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
With the advancement of sequencing technologies and bioinformatics, over than 170 different RNA modifications have been identified. However, only a few of these modifications can lead to base pair changes, which are called RNA editing. RNA editing is a ubiquitous modification in mammalian transcriptomes and is an important co/posttranscriptional modification that plays a crucial role in various cellular processes. There are two main types of RNA editing events: adenosine to inosine (A-to-I) editing, catalyzed by ADARs on double-stranded RNA or ADATs on tRNA, and cytosine to uridine (C-to-U) editing catalyzed by APOBECs. This article provides an overview of the structure, function, and applications of RNA editing enzymes. We discuss the structural characteristics of three RNA editing enzyme families and their catalytic mechanisms in RNA editing. We also explain the biological role of RNA editing, particularly in innate immunity, cancer biogenesis, and antiviral activity. Additionally, this article describes RNA editing tools for manipulating RNA to correct disease-causing mutations, as well as the potential applications of RNA editing enzymes in the field of biotechnology and therapy.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.
| |
Collapse
|
12
|
Jiao Y, Xu Y, Liu C, Miao R, Liu C, Wang Y, Liu J. The role of ADAR1 through and beyond its editing activity in cancer. Cell Commun Signal 2024; 22:42. [PMID: 38233935 PMCID: PMC10795376 DOI: 10.1186/s12964-023-01465-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing of RNA, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is a prevalent RNA modification in mammals. It has been shown that A-to-I editing plays a critical role in multiple diseases, such as cardiovascular disease, neurological disorder, and particularly cancer. ADARs are the family of enzymes, including ADAR1, ADAR2, and ADAR3, that catalyze the occurrence of A-to-I editing. Notably, A-to-I editing is mainly catalyzed by ADAR1. Given the significance of A-to-I editing in disease development, it is important to unravel the complex roles of ADAR1 in cancer for the development of novel therapeutic interventions.In this review, we briefly describe the progress of research on A-to-I editing and ADARs in cancer, mainly focusing on the role of ADAR1 in cancer from both editing-dependent and independent perspectives. In addition, we also summarized the factors affecting the expression and editing activity of ADAR1 in cancer.
Collapse
Affiliation(s)
- Yue Jiao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yuqin Xu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
13
|
Xiang J, Liu W, Liu S, Wang T, Tang H, Yang J. Deciphering the implications of mitophagy-related signatures in clinical outcomes and microenvironment heterogeneity of clear cell renal cell carcinoma. J Cancer Res Clin Oncol 2023; 149:16015-16030. [PMID: 37689589 DOI: 10.1007/s00432-023-05349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The role of mitophagy in various cancer-associated biological processes is well recognized. Nonetheless, the comprehensive implications of mitophagy in clear cell renal cell carcinoma (ccRCC) necessitate further exploration. METHODS Based on the transcriptomic data encompassing 25 mitophagy-related genes (MRGs), we identified the distinct mitophage patterns in 763 ccRCC samples. Subsequently, a mitophage-related predictive signature with machine learning algorithms was constructed, designated as RiskScore, to quantify the individual mitophagy status in ccRCC patients. Employing multispectral immunofluorescence (mIF) and immunohistochemistry (IHC) staining, we detected the effect of PTEN-induced putative kinase 1 (PINK1) in the prognosis and immune microenvironment of ccRCC. RESULTS Our analysis initially encompassed a comprehensive assessment of the expression profiling, genomic variations, and interactions among the 25 MRGs in ccRCC. Subsequently, the consensus clustering algorithm was applied to stratify ccRCC patients into three clusters with distinct prognostic outcomes, tumor microenvironment (TME) characteristics, and underlying biological pathways. We screened eight pivotal genes (CLIC4, PTPRB, SLC16A12, ENPP5, FLRT3, HRH2, PDK4, and SCD5) to construct a mitophagy-related predictive signature, which showed excellent prognostic value for ccRCC patients. Moreover, patient subgroups divided by the RiskScore showed contrasting expression levels of immune checkpoints (ICPs), abundance of immune cells, and immunotherapy response. Additionally, a nomogram was established with robust predictive power integrating the RiskScore and clinical features. Notably, we observed that PINK1 expression markedly correlated with favorable treatment response and advanced maturation stages of tertiary lymphoid structures, which potentially shed light on enhancing anti-tumor immunity of ccRCC. CONCLUSION Collectively, this study initially developed a signature associated with mitophagy, which demonstrated an excellent ability to predict the clinical prognosis, TME characterization, and responsiveness to targeted therapy and immunotherapy for ccRCC patients. Of particular note is the pivotal role of PINK1 in mediating the treatment response and immune microenvironment for ccRCC patients.
Collapse
Affiliation(s)
- Jianfeng Xiang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shifan Liu
- Department of Medical Imaging, Medical School of Nantong University, Nantong, China
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Haidan Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Jianfeng Yang
- Department of Surgery, Shangnan Branch of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Wang XY, Xu YM, Lau ATY. Proteogenomics in Cancer: Then and Now. J Proteome Res 2023; 22:3103-3122. [PMID: 37725793 DOI: 10.1021/acs.jproteome.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.
Collapse
Affiliation(s)
- Xiu-Yun Wang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| |
Collapse
|
15
|
Cao Y, Chen X, Pan F, Wang M, Zhuang H, Chen J, Lu L, Wang L, Wang T. Xinmaikang-mediated mitophagy attenuates atherosclerosis via the PINK1/Parkin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154955. [PMID: 37572567 DOI: 10.1016/j.phymed.2023.154955] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/19/2023] [Accepted: 07/06/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. PURPOSE To explore the above-mentioned mechanisms of action of XMK in AS. MATERIALS AND METHODS Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE-/- mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. RESULTS UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. CONCLUSION The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.
Collapse
Affiliation(s)
- Yanhong Cao
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan 523000, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Xin Chen
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan 523000, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Fuqiang Pan
- Liwan District People's Hospital of Guangzhou, Guangzhou 510405, China
| | - Mingyang Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Haowen Zhuang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Jiangna Chen
- Zhongshan Ophthalmic Center, Sun Yan-Sen University, 510006, China
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Ting Wang
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan 523000, China.
| |
Collapse
|
16
|
Chen S, Du Y, Guan XY, Yan Q. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma. Front Oncol 2023; 13:1204513. [PMID: 37576900 PMCID: PMC10412930 DOI: 10.3389/fonc.2023.1204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance. The tumor microenvironment, encompassing hypoxia, immune cells, stromal cells, and exosomes, exerts a significant impact on HCC progression and therapy response. Hypoxic conditions and immune cell infiltration create an immunosuppressive milieu, shielding tumor cells from immune surveillance and hindering therapeutic efficacy. Additionally, the presence of CSCs emerges as a prominent contributor to sorafenib resistance, with CD133+ CSCs implicated in drug resistance and tumor initiation. Moreover, CSCs undergo EMT, a process intimately linked to tumor progression, CSC activation, and further promotion of sorafenib resistance, metastasis, and tumor-initiating capacity. Elucidating the correlation between the tumor microenvironment, CSCs, and sorafenib resistance holds paramount importance in the quest to develop reliable biomarkers capable of predicting therapeutic response. Novel therapeutic strategies must consider the influence of the tumor microenvironment and CSC activation to effectively overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|