1
|
Fähling M, Paliege A, Jönsson S, Becirovic-Agic M, Melville JM, Skogstrand T, Hultström M. NFAT5 regulates renal gene expression in response to angiotensin II through Annexin-A2-mediated posttranscriptional regulation in hypertensive rats. Am J Physiol Renal Physiol 2018; 316:F101-F112. [PMID: 30332317 DOI: 10.1152/ajprenal.00361.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aim was to identify new targets that regulate gene expression at the posttranscriptional level in angiotensin II (ANGII)-mediated hypertension. Heparin affinity chromatography was used to enrich nucleic acid-binding proteins from kidneys of two-kidney, one-clip (2K1C) hypertensive Wistar rats. The experiment was repeated with 14-day ANGII infusion using Alzet osmotic mini pumps, with or without ANGII receptor AT1a inhibition using losartan in the drinking water. Mean arterial pressure increased after 2K1C or ANGII infusion and was inhibited with losartan. Heparin affinity chromatography and mass spectrometry were used to identify Annexin-A2 (ANXA2) as having differential nucleic acid-binding activity. Total Annexin-A2 protein expression was unchanged, whereas nucleic acid-binding activity was increased in both kidneys of 2K1C and after ANGII infusion through AT1a stimulation. Costaining of Annexin-A2 with α-smooth muscle actin and aquaporin 2 showed prominent expression in the endothelia of larger arteries and the cells of the inner medullary collecting duct. The nuclear factor of activated T cells (NFAT) transcription factor was identified as a likely Annexin-A2 target using enrichment analysis on a 2K1C microarray data set and identifying several binding sites in the regulatory region of the mRNA. Expression analysis showed that ANGII increases NFAT5 protein but not mRNA level and, thus, indicated that NFAT5 is regulated by posttranscriptional regulation, which correlates with activation of the RNA-binding protein Annexin-A2. In conclusion, we show that ANGII increases Annexin-A2 nucleic acid-binding activity that correlates with elevated protein levels of the NFAT5 transcription factor. NFAT signaling appears to be a major contributor to renal gene regulation in high-renin states.
Collapse
Affiliation(s)
- Michael Fähling
- Institut für Vegetative Physiologie, Charité, Universitätsmedizin, Berlin , Germany
| | - Alexander Paliege
- Institut für Anatomie, Charité, Universitätsmedizin, Berlin , Germany
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Jacqueline M Melville
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen , Bergen , Norway
| | - Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| |
Collapse
|
2
|
Favero G, Paini A, De Ciuceis C, Rodella LF, Moretti E, Porteri E, Rossini C, Ministrini S, Solaini L, Stefano C, Coschignano MA, Brami V, Petelca A, Nardin M, Valli I, Tiberio GAM, Bonomini F, Agabiti Rosei C, Portolani N, Rizzoni D, Rezzani R. Changes in extracellular matrix in subcutaneous small resistance arteries of patients with essential hypertension. Blood Press 2018. [PMID: 29523048 DOI: 10.1080/08037051.2018.1448256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND In the development of hypertensive microvascular remodeling, a relevant role may be played by changes in extracellular matrix proteins. Aim of this study was the to evaluate some extracellular matrix components within the tunica media of subcutaneous small arteries in 9 normotensive subjects and 12 essential hypertensive patients, submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. PATIENTS AND METHODS Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph, and the tunica media to internal lumen ratio was measured. In addition, fibronectin, laminin, transforming growth factor-beta-1 (TGF-β1) and emilin-1 contents within the tunica media were evaluated by immunofluorescence and relative immunomorphometrical analysis (immunopositivity % of area). The total collagen content and collagen subtypes within the tunica media were evaluated using both Sirius red staining (under polarized light) and immunofluorescence assay. RESULTS Normotensive controls had less total and type III collagen in respect with hypertensive patients. Fibronectin and TGF-β1 tunica media content was significantly greater in essential hypertensive patients, compared with normotensive controls, while laminin and emilin-1 tunica media content was lesser in essential hypertensive patients, compared with normotensive controls. A significant correlation was observed between fibronectin tunica media content and media to lumen ratio. CONCLUSIONS Our results indicate that, in small resistance arteries of patients with essential hypertension, a relevant fibrosis may be detected; fibronectin and TGF-β1 tunica media content is increased, while laminin and emilin-1 content is decreased; these changes might be involved in the development of small resistance artery remodeling in humans.
Collapse
Affiliation(s)
- Gaia Favero
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Anna Paini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Carolina De Ciuceis
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Luigi F Rodella
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Enrico Moretti
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Enzo Porteri
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Claudia Rossini
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Silvia Ministrini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Leonardo Solaini
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Caletti Stefano
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | | | - Valeria Brami
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Alina Petelca
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Matteo Nardin
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Ilenia Valli
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Guido A M Tiberio
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Francesca Bonomini
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| | - Claudia Agabiti Rosei
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Nazario Portolani
- d Clinica Chirurgica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Damiano Rizzoni
- b Clinica Medica, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,e Division of Medicine , Istituto Clinico Città di Brescia , Brescia , Italy
| | - Rita Rezzani
- a Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy.,c Interdipartimental University Center of Research "Adaption and Regeneration of Tissues and Organs- (ARTO)", University of Brescia , Brescia , Italy
| |
Collapse
|
3
|
Wu B, Gong X, Kennedy WA, Brooks JD. Identification of transcripts associated with renal damage due to ureteral obstruction as candidate urinary biomarkers. Am J Physiol Renal Physiol 2018; 315:F16-F26. [PMID: 29488389 DOI: 10.1152/ajprenal.00382.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal obstruction is a common cause of renal failure in adults and children and is suspected when hydronephrosis is detected on imaging. Because not all cases of hydronephrosis are associated with renal damage, biomarkers are needed to guide intervention to relieve obstruction. We performed gene expression profiling on the kidneys from adult mice over a detailed time course after obstruction and compared these data with a neonatal model of bilateral high-grade obstruction induced by conditional deletion of the calcineurin β1 gene. Having identified a set of 143 transcripts modulated in both adult and neonatal obstruction, we tested their expression in a model of short-term obstruction (1 day), where renal damage is transient and reversible, and long-term obstruction (5 days), where significant renal damage is permanent. A significant number of transcripts increased early after obstruction, and later normalized, while 26 transcripts remained elevated 10 and 28 days after relief of 5 days of ureteral obstruction. With the use of qPCR, elevated levels of several of these candidate RNA biomarkers of renal damage were detected in urine from obstructed mice. In addition, several of these candidate RNA biomarkers of damage resulting from obstruction were detectable in catheterized urine samples from children undergoing surgery for ureteropelvic junction obstruction. Measurement of urinary transcripts modulated in response to renal obstruction could serve as biomarkers of renal damage with important clinical applications.
Collapse
Affiliation(s)
- Bo Wu
- Department of Urology, Stanford University , Stanford, California
| | - Xue Gong
- Department of Urology, Stanford University , Stanford, California
| | | | - James D Brooks
- Department of Urology, Stanford University , Stanford, California
| |
Collapse
|
4
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
5
|
Mullins LJ, Conway BR, Menzies RI, Denby L, Mullins JJ. Renal disease pathophysiology and treatment: contributions from the rat. Dis Model Mech 2017; 9:1419-1433. [PMID: 27935823 PMCID: PMC5200898 DOI: 10.1242/dmm.027276] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The rat has classically been the species of choice for pharmacological studies and disease modeling, providing a source of high-quality physiological data on cardiovascular and renal pathophysiology over many decades. Recent developments in genome engineering now allow us to capitalize on the wealth of knowledge acquired over the last century. Here, we review rat models of hypertension, diabetic nephropathy, and acute and chronic kidney disease. These models have made important contributions to our understanding of renal diseases and have revealed key genes, such as Ace and P2rx7, involved in renal pathogenic processes. By targeting these genes of interest, researchers are gaining a better understanding of the etiology of renal pathologies, with the promised potential of slowing disease progression or even reversing the damage caused. Some, but not all, of these target genes have proved to be of clinical relevance. However, it is now possible to generate more sophisticated and appropriate disease models in the rat, which can recapitulate key aspects of human renal pathology. These advances will ultimately be used to identify new treatments and therapeutic targets of much greater clinical relevance. Summary: This Review highlights the key role that the rat continues to play in improving our understanding of the etiologies of renal pathologies, and how these insights have opened up new therapeutic avenues.
Collapse
Affiliation(s)
- Linda J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryan R Conway
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Robert I Menzies
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
6
|
Shao W, Miyata K, Katsurada A, Satou R, Seth DM, Rosales CB, Prieto MC, Mitchell KD, Navar LG. Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in nonclipped kidneys of two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2016; 311:F278-90. [PMID: 27194718 DOI: 10.1152/ajprenal.00419.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 05/11/2016] [Indexed: 01/13/2023] Open
Abstract
In angiotensin II (ANG II)-dependent hypertension, there is an angiotensin type 1 receptor-dependent amplification mechanism enhancing intrarenal angiotensinogen (AGT) formation and secretion in the tubular fluid. To evaluate the role of increased arterial pressure, AGT mRNA, protein expression, and urinary AGT (uAGT) excretion and tissue injury were assessed in both kidneys of two-kidney, one-clip Sprague-Dawley hypertensive rats subjected to left renal arterial clipping (0.25-mm gap). By 18-21 days, systolic arterial pressure increased to 180 ± 3 mmHg, and uAGT increased. Water intake, body weights, 24-h urine volumes, and sodium excretion were similar. In separate measurements of renal function in anesthetized rats, renal plasma flow and glomerular filtration rate were similar in clipped and nonclipped kidneys and not different from those in sham rats, indicating that the perfusion pressure to the clipped kidneys remained within the autoregulatory range. The nonclipped kidneys exhibited increased urine flow and sodium excretion. The uAGT excretion was significantly greater in nonclipped kidneys compared with clipped and sham kidneys. AGT mRNA was 2.15-fold greater in the nonclipped kidneys compared with sham (1.0 ± 0.1) or clipped (0.98 ± 0.15) kidneys. AGT protein levels were also greater in the nonclipped kidneys. The nonclipped kidneys exhibited greater glomerular expansion and immune cell infiltration, medullary fibrosis, and cellular proliferation than the clipped kidneys. Because both kidneys have elevated ANG II levels, the greater tissue injury in the nonclipped kidneys indicates that an increased arterial pressure synergizes with increased intrarenal ANG II to stimulate AGT production and exert greater renal injury.
Collapse
Affiliation(s)
- Weijian Shao
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kayoko Miyata
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Akemi Katsurada
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ryousuke Satou
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Dale M Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Carla B Rosales
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - Kenneth D Mitchell
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Finne K, Marti HP, Leh S, Skogstrand T, Vethe H, Tenstad O, Berven FS, Scherer A, Vikse BE. Proteomic Analysis of Minimally Damaged Renal Tubular Tissue from Two-Kidney-One-Clip Hypertensive Rats Demonstrates Extensive Changes Compared to Tissue from Controls. Nephron Clin Pract 2016; 132:70-80. [PMID: 26745798 DOI: 10.1159/000442825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tubular atrophy and interstitial fibrosis mark the final stage in most forms of progressive kidney diseases. Little is known regarding changes in the tubular proteome. In this study, we investigated changes in the tubular proteome of normal or minimally damaged tubular tissue in the non-clipped kidney from rats with two-kidney one-clip (2K1C) hypertension. METHODS Formalin-fixed paraffin-embedded kidney sections from four 2K1C rats with hypertensive kidney damage and 6 sham rats were used. Tubulointerstitial tissue without discernable interstitial expansion or pronounced tubular alterations was microdissected and this was assumed to represent an early stage of chronic tubular damage in 2K1C. Samples were analyzed by mass spectrometry and relative protein abundances were compared between 2K1C and sham. RESULTS A total of 1,160 proteins were identified with at least 2 unique peptides, allowing for relative quantitation between samples. Among these, 151 proteins were more abundant, and 192 proteins were less abundant in 2K1C compared with sham. Transgelin, vimentin and creatine kinase B-type were among the proteins that were most increased in 2K1C. Ingenuity Pathway Analysis showed increased abundance of proteins related to Rho signaling and protein turnover (eIF2 signaling and protein ubiquitination), and decreased abundance of proteins related to fatty acid β-oxidation. CONCLUSION Tubular tissue from normal or minimally damaged hypertensive kidney damage demonstrate extensive proteomic changes with upregulation of pathways associated with progressive kidney damage, such as Rho signaling and protein turnover. Thus, proteomics presents itself to be a promising tool for the discovery of early damage markers from not yet morphologically visible tubular damage.
Collapse
|