1
|
Du YX, Li X, Ji SW, Niu N. Hypertension toxicity of VEGFR-TKIs in cancer treatment: incidence, mechanisms, and management strategies. Arch Toxicol 2024:10.1007/s00204-024-03874-4. [PMID: 39347999 DOI: 10.1007/s00204-024-03874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) are a class of targeted anticancer agents that include pazopanib, sunitinib, axitinib, and others. Currently, VEGFR-TKIs are widely used in the clinical treatment of various tumors, which can prolong patients' survival and even cure tumors. However, the use of VEGFR-TKIs is frequently associated with the occurrence of cardiovascular adverse events, with hypertension being the most prevalent. Hypertension and its complications can significantly impact the prognosis of patients, potentially jeopardizing their lives and resulting in the reduction or even cessation of treatment in severe cases. This review addresses the incidence of hypertension due to VEGFR-TKIs, mechanisms of toxicity, management strategies, and future research directions. In addition, hypertension due to VEGFR-TKIs may be associated with salt sensitivity, and possible mechanisms of hypertensive side effects are vasodilator imbalance, decreased capillary density, renal injury, impaired endothelial function due to oxidative stress, decreased lymphatic vascular density, and "off-target effect". A comprehensive understanding of hypertension toxicity due to cancer treatment with VEGFR-TKIs, can enhance clinical practice, thereby improving the prognostic outcomes of VEGFR-TKIs in oncology patients.
Collapse
Affiliation(s)
- Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Si-Wen Ji
- Office of Academic Affairs, North Sichuan Medical College, Nanchong, 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
2
|
Rangaswamy D, Nagaraju SP, Bhojaraja MV, Swaminathan SM, Prabhu RA, Rao IR, Shenoy SV. Ocular and systemic vascular endothelial growth factor ligand inhibitor use and nephrotoxicity: an update. Int Urol Nephrol 2024; 56:2635-2644. [PMID: 38498275 PMCID: PMC11266217 DOI: 10.1007/s11255-024-03990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Tumor growth is intricately linked to the process of angiogenesis, with a key role played by vascular endothelial growth factor (VEGF) and its associated signaling pathways. Notably, these pathways also play a pivotal "housekeeping" role in renal physiology. Over the past decade, the utilization of VEGF signaling inhibitors has seen a substantial rise in the treatment of diverse solid organ tumors, diabetic retinopathy, age-related macular degeneration, and various ocular diseases. However, this increased use of such agents has led to a higher frequency of encountering renal adverse effects in clinical practice. This review comprehensively addresses the incidence, pathophysiological mechanisms, and current evidence concerning renal adverse events associated with systemic and intravitreal antiangiogenic therapies targeting VEGF-A and its receptors (VEGFR) and their associated signaling pathways. Additionally, we briefly explore strategies for mitigating potential risks linked to the use of these agents and effectively managing various renal adverse events, including but not limited to hypertension, proteinuria, renal dysfunction, and electrolyte imbalances.
Collapse
Affiliation(s)
- Dharshan Rangaswamy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | | | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ravindra A Prabhu
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Indu Ramachandra Rao
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Vinayak Shenoy
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
4
|
Nephrotoxicity of Anti-Angiogenic Therapies. Diagnostics (Basel) 2021; 11:diagnostics11040640. [PMID: 33916159 PMCID: PMC8066213 DOI: 10.3390/diagnostics11040640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
The use of inhibitors of vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling for the treatment of cancer has increased over the last decade. This signaling pathway plays a fundamental role in angiogenesis and also in kidney physiology. The emergence of anti-angiogenic therapies has led to adverse nephrotoxic effects, despite improving the outcomes of patients. In this review, we will present the different anti-angiogenic therapies targeting the VEGFR pathway in association with the incidence of renal manifestations during their use. In addition, we will discuss, in detail, the pathophysiological mechanisms of frequent renal diseases such as hypertension, proteinuria, renal dysfunction, and electrolyte disorders. Finally, we will outline the cellular damage described following these therapies.
Collapse
|
5
|
Liu Y, Tang LL, Liang C, Wu MM, Zhang ZR. Insulin Resistance and Pellino-1 Mediated Decrease in the Activities of Vasodilator Signaling Contributes to Sunitinib-Induced Hypertension. Front Pharmacol 2021; 12:617165. [PMID: 33841146 PMCID: PMC8027079 DOI: 10.3389/fphar.2021.617165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023] Open
Abstract
Antiangiogenic tyrosine kinases inhibitors induce hypertension, which may increase the incidents of cardiovascular complications and limit their use. However, the mechanisms by which usage of TKIs results in hypertension have not been fully understood. Here, we report the potential mechanisms of how sunitinib, a widely used TKI, induces hypertension. Male SD rats were randomly divided into control group and sunitinib-administrated group. We show that sunitinib administration for seven days caused a significant increase in artery blood pressure, along with glycerolipid metabolism abnormalities including decreased food intake and low body weight, hypoglycemia, hyperinsulinemia. Sunitinib administration also resulted in a significant increase in the levels of insulin autoantibody (IAA), cyclic adenosine monophosphate and free fatty acid in serum; whereas, sunitinib administration had no effects on serum glucagon levels. Sunitinib led to the decreased insulin sensitivity as determined by insulin tolerance test (ITT) and glucose tolerance test (GTT), reflecting insulin resistance occurred in sunitinib-treated rats. The results obtained from wire myograph assay in the mesenteric arteries show that endothelium-dependent relaxation, but not endothelium-independent relaxation, was impaired by sunitinib. Furthermore, western blot analysis revealed that the expressions levels of phosphorylated IRS-1, Pellino-1, AKT and eNOS were significantly attenuated by sunitinib in rat mesenteric artery tissues and in the sunitinib-treated primary cultured mesenteric artery endothelial cells. The levels of serum and endothelium-derived nitric oxide were also significantly decreased by sunitinib. Moreover, sunitinib-induced decrease in the expression levels of phosphorylated AKT and eNOS was further reduced by knocking down of Pellino-1 in MAECs. Our results suggest that sunitinib causes vascular dysfunction and hypertension, which are associated with insulin resistance- and Pellino-1-mediated inhibition of AKT/eNOS/NO signaling. Our results may provide a rational for preventing and/or treating sunitinib-induced endothelial dysfunction and hypertension.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Liang-Liang Tang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Chen Liang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Ming Wu
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Clinical Pharmacy, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang key laboratory for Metabolic disorder and cancer related cardiovascular diseases, and Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.,NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Sunitinib-induced oxidative imbalance and retinotoxic effects in rats. Life Sci 2020; 257:118072. [PMID: 32659367 DOI: 10.1016/j.lfs.2020.118072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
Abstract
AIMS Sunitinib (Su), a tyrosine kinase inhibitor, is one of the most commonly used anti-angiogenic drugs. Some studies have described retinal detachment and photoreceptor damage following systemic exposure to Su, despite beneficial effects achieved with local treatment of ocular pathologies. The aim of this study was to explore the role of NADPH oxidase system and oxidative stress in eyes from Su-treated animals. MAIN METHODS Male Wistar rats were administered 25 mg Su/kg body weight/day incorporated in the chow for 3 weeks. Upon treatment completion, NADPH oxidase activity and ROS levels were measured in ocular tissue by chemiluminescence and dihydroethidium (DHE) staining, respectively. The expression of NADPH oxidase isoforms (NOX1, NOX2 and NOX4), antioxidant enzymes and endothelial/inducible nitric oxidase isoforms (eNOS/iNOS) in the eyecup and/or retina were measured via immunofluorescence, immunoblotting and RT-qPCR. KEY FINDINGS NADPH oxidase activity/expression increased in eyecup and retinas from Su-treated rats. Immunohistofluorescence studies in retinal layer confirmed a higher signal of NADPH oxidase isoforms after Su treatment. Treated animals also presented with reductions in NO levels and eNOS expression, whereas iNOS was upregulated. Finally, a significant depletion of antioxidant enzyme glutathione peroxidase was measured in eyecups of rats following Su exposure, and the opposite pattern was seen for glutathione reductase and superoxide dismutase. SIGNIFICANCE This study demonstrates that Su treatment is associated with NADPH oxidase-derived oxidative stress in the eye. Long-term treatment of Su should be properly monitored to avoid retinotoxic effects that might result in ocular pathologies and sight-threatening conditions.
Collapse
|
7
|
Versmissen J, Mirabito Colafella KM, Koolen SLW, Danser AHJ. Vascular Cardio-Oncology: Vascular Endothelial Growth Factor inhibitors and hypertension. Cardiovasc Res 2020; 115:904-914. [PMID: 30726882 DOI: 10.1093/cvr/cvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
Since the formation of new blood vessels is essential for tumour growth and metastatic spread, inhibition of angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway is an effective strategy for various types of cancer, most importantly renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. However, VEGF inhibitors have serious side effects, most importantly hypertension and nephropathy. In case of fulminant hypertension, this may only be handled by lowering the dosage since the blood pressure rise is proportional to the amount of VEGF inhibition. These effects pathophysiologically and clinically resemble the most severe complication of pregnancy, preeclampsia, in which case an insufficient placenta leads to a rise in sFlt-1 levels causing a decrease in VEGF availability. Due to this overlap, studies in preeclampsia may provide important information for VEGF inhibitor-induced toxicity and vice versa. In both VEGF inhibitor-induced toxicity and preeclampsia, endothelin (ET)-1 appears to be a pivotal player. In this review, after briefly summarizing the anticancer effects, we discuss the mechanisms that potentially underlie the unwanted effects of VEGF inhibitors, focusing on ET-1, nitric oxide and oxidative stress, the renin-angiotensin-aldosterone system, and rarefaction. Given the salt sensitivity of this phenomenon, as well as the beneficial effects of aspirin in preeclampsia and cancer, we next provide novel treatment options for VEGF inhibitor-induced toxicity, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs. We conclude with the recommendation of therapeutic drug monitoring to improve patient outcome.
Collapse
Affiliation(s)
- Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| | - Katrina M Mirabito Colafella
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| |
Collapse
|
8
|
Witte J, Mühlbauer M, Braun D, Steinbach A, Golchert J, Rettig R, Grisk O. Renal Soluble Guanylate Cyclase Is Downregulated in Sunitinib-Induced Hypertension. J Am Heart Assoc 2018; 7:e009557. [PMID: 30371202 PMCID: PMC6222942 DOI: 10.1161/jaha.118.009557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background The tyrosine kinase inhibitor sunitinib causes hypertension associated with reduced nitric oxide (NO) availability, elevated renal vascular resistance, and decreased fractional sodium excretion. We tested whether (1) nitrate supplementation mitigates sunitinib‐induced hypertension and NO contributes less to renal vascular resistance as well as fractional sodium excretion regulation in sunitinib‐treated rats than in controls; and (2) renal soluble guanylate cyclase (sGC) is downregulated and sGC activation lowers arterial pressure in rats with sunitinib‐induced hypertension. Methods and Results Arterial pressure responses to nitrate supplementation and the effects of systemic and intrarenal NO synthase (NOS) inhibition on renal hemodynamics and fractional sodium excretion were assessed in sunitinib‐treated rats and controls. Renal NOS and sGC mRNA as well as protein abundances were determined by quantitative polymerase chain reaction and Western blot. The effect of the sGC activator cinaciguat on arterial pressure was investigated in sunitinib‐treated rats. Nitrate supplementation did not mitigate sunitinib‐induced hypertension. Endothelium‐dependent reductions in renal vascular resistance were similar in control and sunitinib‐treated animals without and with systemic NOS inhibition. Selective intrarenal NOS inhibition lowered renal medullary blood flow in control but not in sunitinib‐treated rats without significant effects on fractional sodium excretion. Renal cortical sGC mRNA and sGC α1‐subunit protein abundance were less in sunitinib‐treated rats than in controls, and cinaciguat effectively lowered arterial pressure by 15‐20 mm Hg in sunitinib‐treated rats. Conclusions Renal cortical sGC is downregulated in the presence of intact endothelium‐dependent renal vascular resistance regulation in developing sunitinib‐induced hypertension. This suggests that sGC downregulation occurs outside the renal vasculature, increases renal sodium retention, and contributes to nitrate resistance of sunitinib‐induced hypertension.
Collapse
Affiliation(s)
- Jeannine Witte
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Melanie Mühlbauer
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Diana Braun
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Antje Steinbach
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Janine Golchert
- 2 Interfaculty Institute for Genetics and Functional Genomics University of Greifswald Greifswald Germany
| | - Rainer Rettig
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| | - Olaf Grisk
- 1 Institute of Physiology University of Greifswald Greifswald Germany
| |
Collapse
|