1
|
Climie RE, Alastruey J, Mayer CC, Schwarz A, Laucyte-Cibulskiene A, Voicehovska J, Bianchini E, Bruno RM, Charlton PH, Grillo A, Guala A, Hallab M, Hametner B, Jankowski P, Königstein K, Lebedeva A, Mozos I, Pucci G, Puzantian H, Terentes-Printzios D, Yetik-Anacak G, Park C, Nilsson PM, Weber T. Vascular ageing: moving from bench towards bedside. Eur J Prev Cardiol 2023; 30:1101-1117. [PMID: 36738307 PMCID: PMC7614971 DOI: 10.1093/eurjpc/zwad028] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Prevention of cardiovascular disease (CVD) remains one of the largest public health challenges of our time. Identifying individuals at increased cardiovascular risk at an asymptomatic, sub-clinical stage is of paramount importance for minimizing disease progression as well as the substantial health and economic burden associated with overt CVD. Vascular ageing (VA) involves the deterioration in vascular structure and function over time and ultimately leads to damage in the heart, brain, kidney, and other organs. Vascular ageing encompasses the cumulative effect of all cardiovascular risk factors on the arterial wall over the life course and thus may help identify those at elevated cardiovascular risk, early in disease development. Although the concept of VA is gaining interest clinically, it is seldom measured in routine clinical practice due to lack of consensus on how to characterize VA as physiological vs. pathological and various practical issues. In this state-of-the-art review and as a network of scientists, clinicians, engineers, and industry partners with expertise in VA, we address six questions related to VA in an attempt to increase knowledge among the broader medical community and move the routine measurement of VA a little closer from bench towards bedside.
Collapse
Affiliation(s)
- Rachel E. Climie
- Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool St, 7000 Hobart, Australia
- Sports Cardiology, Baker Heart and Diabetes Institute, 99 Commercial Rd, Melbourne 3000, Australia
- Integrative Epidemiology of Cardiovascular Disease, Université de Paris, INSERM, U970, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, 75015 Paris, France
| | - Jordi Alastruey
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, 249 Westminster Bridge Rd, London SE1 7EH, UK
| | - Christopher C. Mayer
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Achim Schwarz
- ALF Distribution GmbH, Stephanstrasse 19, 52064 Aachen, Germany
| | - Agne Laucyte-Cibulskiene
- Department of Clinical Sciences, Lund University, Skane University Hospital, Sölvegatan 19 - BMC F12, 221 84 Lund, Malmö, Sweden
- Faculty of Medicine, Vilnius University, M. K. C iurlionio g. 21, 03101 Vilnius, Lithuania
| | - Julija Voicehovska
- Department of Internal Diseases, Riga Stradins University, Dzirciema str. 16, Riga, L-1007, Latvia
- Nephrology and Renal Replacement Therapy Clinics, Riga East University Hospital, Hipokrata str. 2, Riga, LV-1079, Latvia
| | - Elisabetta Bianchini
- Institute of Clinical Physiology, Italian National Research Council (CNR), Via Moruzzi, 1, 56124 Pisa (PI), Italy
| | - Rosa-Maria Bruno
- Integrative Epidemiology of Cardiovascular Disease, Université de Paris, INSERM, U970, Paris Cardiovascular Research Center (PARCC), 56 rue Leblanc, 75015 Paris, France
| | - Peter H. Charlton
- Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Andrea Grillo
- Medicina Clinica, Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Andrea Guala
- Vall d’Hebron Institut de Recerca (VHIR), Paseo de la Vall d’Hebron, 129, 08035 Barcelona, Spain
| | - Magid Hallab
- Clinique Bizet, 23 Georges Bizet, 75116 Paris, France
| | - Bernhard Hametner
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Centre of Postgraduate Medical Education, 231 Czerniakowska St., 00-416 Warsaw, Poland
| | - Karsten Königstein
- Department of Sport, Exercise and Health (DSBG) University of Basel, Grosse Allee 6, 4052 Basel, Switzerland
| | - Anna Lebedeva
- Department of Internal Medicine and Cardiology, Dresden Heart Centre, Dresden University of Technology, Fetscher str. 76, 01307 Dresden, Germany
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, ‘Victor Babes’ University of Medicine and Pharmacy, T. Vladimirescu Street 14, 300173 Timisoara, Romania
| | - Giacomo Pucci
- Unit of Internal Medicine, Terni University Hospital - Department of Medicine and Surgery, University of Perugia, Terni, Italy
| | - Houry Puzantian
- Hariri School of Nursing, American University of Beirut, P.O. Box 11-0236, Riad El Solh 1107 2020, Beirut, Lebanon
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Kayisdagi Cad. No:32 Atasehir, 34752 Istanbul, Turkey
| | - Chloe Park
- MRC Unit for Lifelong Health and Ageing at UCL, 1-19 Torrington Place, London WC1E 7HB, UK; and
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Sölvegatan 19 - BMC F12, 221 84 Lund, Malmö, Sweden
| | - Thomas Weber
- Cardiology Department, Klinikum Wels-Grieskirchen, Grieskirchnerstrasse 42, 4600 Wels, Austria
| |
Collapse
|
2
|
Hofmann AG, Shoumariyeh T, Domenig C, Skrabal F, Kovarik JJ. Abdominal Aortic Aneurysm Detection in Bioelectrical Impedance Cardiovascular Screenings-A Pilot Study. J Clin Med 2023; 12:jcm12113726. [PMID: 37297921 DOI: 10.3390/jcm12113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Screening and diagnosing abdominal aortic aneurysms (AAA) are currently dependent on imaging studies such as ultrasound or computed tomography angiography. All imaging studies offer distinct advantages but also suffer from inherent limitations such as examiner dependency or ionizing radiation. Bioelectrical impedance analysis has previously been investigated with respect to its use in the detection of several cardiovascular and renal pathologies. The present pilot study assessed the feasibility of AAA detection based on bioimpedance analysis. In this single-center exploratory pilot study, measurements were conducted among three different cohorts: patients with AAA, end-stage renal disease patients without AAA, and healthy controls. The device used in the study, CombynECG, is an open-market accessible device for segmental bioelectrical impedance analysis. The data was preprocessed and used to train four different machine learning models on a randomized training sample (80% of the full dataset). Each model was then evaluated on a test set (20% of the full dataset). The total sample included 22 patients with AAA, 16 chronic kidney disease patients, and 23 healthy controls. All four models showed strong predictive performance in the test partitions. Specificity ranged from 71.4 to 100%, while sensitivity ranged from 66.7 to 100%. The best-performing model had 100% accuracy for classification when applied to the test sample. Additionally, an exploratory analysis to approximate the maximum AAA diameter was conducted. An association analysis revealed several impedance parameters that might possess predictive ability with respect to aneurysm size. AAA detection via bioelectrical impedance analysis is technically feasible and appears to be a promising technology for large-scale clinical studies and routine clinical screening assessments.
Collapse
Affiliation(s)
- Amun G Hofmann
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Tarik Shoumariyeh
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Domenig
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Falko Skrabal
- Institute of Cardiovascular & Metabolic Medicine, 8010 Graz, Austria
| | - Johannes J Kovarik
- Department of Internal Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. ACTA ACUST UNITED AC 2020; 2:209-230. [PMID: 36262174 PMCID: PMC9536727 DOI: 10.36628/ijhf.2020.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Whereas traditional understanding of left ventricular afterload was focused on a steady-state circulation model with continuous pressures and flow, a more realistic concept is emerging, taking the pulsatile nature of the heart and the arterial system into account. The most simple measure of pulsatility is brachial pulse pressure, representing the pulsatility fluctuating around the mean blood pressure level. Brachial pulse pressure is widely available, fundamentally associated with the development and treatment of heart failure (HF), but its analysis is often confounded in patients with established HF. The next step of analysis consists of arterial stiffness, central (rather than brachial) pressures, and of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodeling, diastolic dysfunction, exercise capacity, and, in the long term, the risk of new-onset HF. Wave reflection may also evolve as a suitable therapeutic target for HF with preserved and reduced ejection fraction. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals. This review provides a summary of current understanding of pulsatile hemodynamics in HF.
Collapse
|