1
|
Yusuf SM, Norton GR, Peterson VR, Mthembu N, Libhaber CD, Tade G, Bello H, Bamaiyi AJ, Mmopi KN, Dessein PH, Peters F, Sareli P, Woodiwiss AJ. Role of atrial natriuretic peptide in the dissociation between flow relations with ventricular mass and function in a community with volume-dependent hypertension. Front Cardiovasc Med 2023; 10:1175145. [PMID: 37265568 PMCID: PMC10230032 DOI: 10.3389/fcvm.2023.1175145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Background Whether differential effects of volume load on left ventricular mass (LVM) and function occur in sustained volume-dependent primary hypertension, and the impact of atrial natriuretic peptide (ANP) on these effects, is unknown. Methods From aortic pressure, velocity and diameter measurements and echocardiography, we determined in an African community (n = 772), the impact of systemic flow-induced increases in central pulse pressure (PPc) and circulating ANP (ELISA) on LVM and indexes of function. Results Stroke volume (SV), but not aortic flow (Q), was associated with LVM and mean wall thickness (MWT) beyond stroke work and confounders (p < 0.0001). Adjustments for SV markedly decreased the relationships between PPc and LVMI or MWT. However, neither SV, nor Q were independently associated with either myocardial s', e', or E/e' (p > 0.14) and adjustments for neither SV nor Q modified relationships between PPc and s', e' or E/e' (p < 0.005 to <0.0001). SV was nevertheless strongly and independently associated with ANP (p < 0.0001) and ANP was similarly strikingly associated with s' (p < 0.0001) and e' (p < 0.0005), but not E/e', independent of confounders and several determinants of afterload. Importantly, ANP concentrations were inversely rather than positively associated with LV diastolic dysfunction (DD) (p < 0.005) and lower rather than higher ANP concentrations contributed markedly to the ability to detect DD in those with, but not without LV hypertrophy. Conclusion In populations with sustained volume-dependent hypertension, flow (SV)-related increases in PP have a major impact on LV structure, but not on function, an effect attributed to parallel striking beneficial actions of ANP on myocardial function.
Collapse
|
2
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
3
|
Cardiac morphological and functional changes induced by C-type natriuretic peptide are different in normotensive and spontaneously hypertensive rats. J Hypertens 2021; 38:2305-2317. [PMID: 32649642 DOI: 10.1097/hjh.0000000000002570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inflammation and fibrosis are key mechanisms in cardiovascular remodeling. C-type natriuretic peptide (CNP) is an endothelium-derived factor with a cardiovascular protective role, although its in-vivo effect on cardiac remodeling linked to hypertension has not been investigated. The aim of this study was to determine the effects of chronic administration of CNP on inflammatory and fibrotic cardiac mechanisms in normotensive Wistar rats and spontaneously hypertensive rats (SHR). METHODS Twelve-week-old male SHR and normotensive rats were infused with CNP (0.75 μg/h/100 g) or isotonic saline (NaCl 0.9%) for 14 days (subcutaneous micro-osmotic pumps). Echocardiograms and electrocardiograms were performed, and SBP was measured. After treatment, transforming growth factor-beta 1, Smad proteins, tumor necrosis factor-alpha, interleukin-1 and interleukin-6, nitric oxide (NO) system and 2-thiobarbituric acid-reactive substances were evaluated in left ventricle. Histological studies were also performed. RESULTS SHR showed lower cardiac output with signs of fibrosis and hypertrophy in left ventricle, higher NO-system activity and more oxidative damage, as well as higher pro-inflammatory and pro-fibrotic markers than normotensive rats. Chronic CNP treatment-attenuated hypertension and ventricular hypertrophy in SHR, with no changes in normotensive rats. In left ventricle, CNP induced an anti-inflammatory and antifibrotic response, decreasing both pro-fibrotic and pro-inflammatory cytokines in SHR. In addition, CNP reduced oxidative damage as well as collagen content, and upregulated the NO system in both groups. CONCLUSION Chronic CNP treatment appears to attenuate hypertension and associated end-organ damage in the heart by reducing inflammation and fibrosis.
Collapse
|
4
|
Cerrudo CS, Cavallero S, Rodríguez Fermepín M, González GE, Donato M, Kouyoumdzian NM, Gelpi RJ, Hertig CM, Choi MR, Fernández BE. Cardiac Natriuretic Peptide Profiles in Chronic Hypertension by Single or Sequentially Combined Renovascular and DOCA-Salt Treatments. Front Physiol 2021; 12:651246. [PMID: 34113261 PMCID: PMC8185994 DOI: 10.3389/fphys.2021.651246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
The involvement of natriuretic peptides was studied during the hypertrophic remodeling transition mediated by sequential exposure to chronic hemodynamic overload. We induced hypertension in rats by pressure (renovascular) or volume overload (DOCA-salt) during 6 and 12 weeks of treatment. We also studied the consecutive combination of both models in inverse sequences: RV 6 weeks/DS 6 weeks and DS 6 weeks/RV 6 weeks. All treated groups developed hypertension. Cardiac hypertrophy and left ventricular ANP gene expression were more pronounced in single DS than in single RV groups. BNP gene expression was positively correlated with left ventricular hypertrophy only in RV groups, while ANP gene expression was positively correlated with left ventricular hypertrophy only in DS groups. Combined models exhibited intermediate values between those of single groups at 6 and 12 weeks. The latter stimulus associated to the second applied overload is less effective than the former to trigger cardiac hypertrophy and to increase ANP and BNP gene expression. In addition, we suggest a correlation of ANP synthesis with volume overload and of BNP synthesis with pressure overload-induced hypertrophy after a prolonged treatment. Volume and pressure overload may be two mechanisms, among others, involved in the differential regulation of ANP and BNP gene expression in hypertrophied left ventricles. Plasma ANP levels reflect a response to plasma volume increase and volume overload, while circulating BNP levels seem to be regulated by cardiac BNP synthesis and ventricular hypertrophy.
Collapse
Affiliation(s)
- Carolina S. Cerrudo
- Facultad de Farmacia y Bioquímica, Cátedras de Fisiopatología y Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Susana Cavallero
- Facultad de Farmacia y Bioquímica, Cátedras de Fisiopatología y Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Rodríguez Fermepín
- Facultad de Farmacia y Bioquímica, Cátedras de Fisiopatología y Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Germán E. González
- Facultad de Medicina, CONICET, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Donato
- Facultad de Medicina, CONICET, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolás M. Kouyoumdzian
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Ricardo J. Gelpi
- Facultad de Medicina, CONICET, Instituto de Fisiopatología Cardiovascular, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia M. Hertig
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Buenos Aires, Argentina
| | - Marcelo R. Choi
- Facultad de Farmacia y Bioquímica, Cátedras de Fisiopatología y Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H. A. Barceló, Buenos Aires, Argentina
| | - Belisario E. Fernández
- Facultad de Farmacia y Bioquímica, Cátedras de Fisiopatología y Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H. A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
5
|
Wang Y, Keskanokwong T, Cheng J. Kv4.3 expression abrogates and reverses norepinephrine-induced myocyte hypertrophy by CaMKII inhibition. J Mol Cell Cardiol 2018; 126:77-85. [PMID: 30462989 DOI: 10.1016/j.yjmcc.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/23/2018] [Accepted: 11/17/2018] [Indexed: 01/27/2023]
Abstract
BACKGROUND Down-regulation of Kv4.3 protein is a general feature of cardiac hypertrophy. Based on our recent studies, we propose that Kv4.3 reduction may be a hypertrophic stimulator. OBJECTIVE We tested whether Kv4.3 expression can prevent or reverse cardiac hypertrophy induced by norepinephrine (NE). METHODS AND RESULTS Incubation of 20 μM NE in cultured neonatal rat ventricular myocytes (NRVMs) for 48 h and 96 h induced myocyte hypertrophy in a time-dependent manner, characterized by progressive increase in cell size, protein/DNA ratio, ANP and BNP, along with an progressive increase in the activity of CaMKII and calcineurin and reduction of Kv4.3 mRNA and proteins. Interestingly, PKA-dependent phosphorylation of phospholamban (PLB) at Ser16 was increased at 48 h but reduced to the basal level at 96 h NE incubation. CaMKII inhibitors KN93 and AIP blunted NE-induced hypertrophic response and caused regression of hypertrophy, which is associated with a reduction of CaMKII activity and calcineurin expression. Kv4.3 expression completely suppressed the development of NE-induced hypertrophy and led to a regression in the hypertrophic myocytes. These effects were accompanied by a reduction in CaMKII autophosphorylation, PLB phosphorylation at Thr-17 without changing PLB phosphorylation at Ser-16. NFATc3 was also reduced by Kv4.3 expression. CONCLUSIONS Our results demonstrated that Kv4.3 reduction is an important mediator in cardiac hypertrophy development via excessive CaMKII activation and that Kv4.3 expression is likely a potential therapeutic strategy for prevention and reversion of adrenergic stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Medical Research Institute, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA.
| | | | - Jun Cheng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, China; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Yang Y, Zhou Y, Cao Z, Tong XZ, Xie HQ, Luo T, Hua XP, Wang HQ. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy. Exp Ther Med 2016; 12:1556-1562. [PMID: 27588076 DOI: 10.3892/etm.2016.3506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/06/2016] [Indexed: 12/15/2022] Open
Abstract
Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2-1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1.
Collapse
Affiliation(s)
- Yong Yang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yong Zhou
- Department of Medical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xin Zhu Tong
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Qiang Xie
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Tao Luo
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xian Ping Hua
- Department of Cardiology, Suizhou Central Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Han Qin Wang
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
7
|
Testosterone suppresses ventricular remodeling and improves left ventricular function in rats following myocardial infarction. Exp Ther Med 2015; 9:1283-1291. [PMID: 25780423 PMCID: PMC4353801 DOI: 10.3892/etm.2015.2269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022] Open
Abstract
Men with congestive heart failure (CHF) have relatively low testosterone levels. Several studies demonstrated that testosterone treatment increases cardiac output and reduces peripheral vascular resistance. However, the effects of testosterone on heart function, cardiomyocyte apoptosis and ventricular remodeling have not been fully elucidated. This study was conducted to investigate the effects of testosterone on heart function, cardiomyocyte apoptosis and ventricular remodeling in male rats post-myocardial infarction. A total of 86 male rats were randomly assigned to undergo ligation of the coronary artery (n=70) or pseudosurgery (n=16). After 6 weeks, a left ventricular ejection fraction (LVEF) of ≤45% was defined as a successful model of CHF. The model rats were randomly assigned to 3 groups, namely low-dose testosterone (TU), high-dose TU and placebo (PL) groups. After treatment for 12 weeks, the expression of several mRNA transcripts in myocardial tissue was measured by quantitative polymerase chain reaction. Immunofluorescence was used to measure myocardial caspase-3 expression. Compared to the PL group, LVEF was significantly improved in the TU treatment groups. Moreover, the mRNA expression of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase-2 and sarcoendoplasmic reticulum Ca2+-ATPase 2a was significantly reduced, while the mRNA expression of glycogen synthase kinase 3β and tissue inhibitor of metalloproteinase-2 was markedly increased in the TU groups. TU treatment also significantly reduced caspase-3 expression. Therefore, different doses of TU suppressed ventricular remodeling and improved left ventricular function, reduced apoptosis and prevented mortality in a CHF rat model.
Collapse
|
8
|
Renal overexpression of atrial natriuretic peptide and hypoxia inducible factor-1α as adaptive response to a high salt diet. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936978. [PMID: 24689065 PMCID: PMC3943195 DOI: 10.1155/2014/936978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 01/11/2023]
Abstract
In the kidney, a high salt intake favors oxidative stress and hypoxia and causes the development of fibrosis. Both atrial natriuretic peptide (ANP) and hypoxia inducible factor (HIF-1α) exert cytoprotective effects. We tested the hypothesis that renal expression of ANP and HIF-1α is involved in a mechanism responding to the oxidative stress produced in the kidneys of rats chronically fed a high sodium diet. Sprague-Dawley rats were fed with a normal salt (0.4% NaCl) (NS) or a high salt (8% NaCl) (HS) diet for 3 weeks, with or without the administration of tempol (T), an inhibitor of oxidative stress, in the drinking water. We measured the mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa). We evaluated the expression of ANP, HIF-1α, and transforming growth factor (TGF-β1) in renal tissues by western blot and immunohistochemistry. The animals fed a high salt diet showed increased MAP and UVNa levels and enhanced renal immunostaining of ANP, HIF-1α, and TGF-β1. The administration of tempol together with the sodium overload increased the natriuresis further and prevented the elevation of blood pressure and the increased expression of ANP, TGF-β1, and HIF-1α compared to their control. These findings suggest that HIF-1α and ANP, synthesized by the kidney, are involved in an adaptive mechanism in response to a sodium overload to prevent or attenuate the deleterious effects of the oxidative stress and the hypoxia on the development of fibrosis.
Collapse
|
9
|
Gomes AC, Falcão-Pires I, Pires AL, Brás-Silva C, Leite-Moreira AF. Rodent models of heart failure: an updated review. Heart Fail Rev 2013; 18:219-49. [PMID: 22446984 DOI: 10.1007/s10741-012-9305-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heart failure (HF) is one of the major health and economic burdens worldwide, and its prevalence is continuously increasing. The study of HF requires reliable animal models to study the chronic changes and pharmacologic interventions in myocardial structure and function and to follow its progression toward HF. Indeed, during the past 40 years, basic and translational scientists have used small animal models to understand the pathophysiology of HF and find more efficient ways of preventing and managing patients suffering from congestive HF (CHF). Each species and each animal model has advantages and disadvantages, and the choice of one model over another should take them into account for a good experimental design. The aim of this review is to describe and highlight the advantages and drawbacks of some commonly used HF rodents models, including both non-genetically and genetically engineered models, with a specific subchapter concerning diastolic HF models.
Collapse
Affiliation(s)
- A C Gomes
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|
10
|
Lee FY, Lu HI, Zhen YY, Leu S, Chen YL, Tsai TH, Chung SY, Chua S, Sheu JJ, Hsu SY, Chang HW, Sun CK, Yip HK. Benefit of combined therapy with nicorandil and colchicine in preventing monocrotaline-induced rat pulmonary arterial hypertension. Eur J Pharm Sci 2013; 50:372-84. [PMID: 23954457 DOI: 10.1016/j.ejps.2013.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/30/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
This study tested the hypothesis that combined therapy with nicorandil and colchicine is superior to either alone in attenuating monocrotaline (MCT)-induced rat pulmonary arterial hypertension (PAH). Adult male Sprague-Dawley rats (n=50) were equally randomized into group 1 (sham control), group 2 [MCT (60 mg/kg i.p.)], group 3 [MCT-Nicorandil (5.0 mg/kg/day)], group 4 [MCT-Colchicine (1.0 mg/kg/day)], and group 5 (MCT-Nicorandil-Colchicine). Drugs were given on day 5. All animals were sacrificed on day 90 after MCT administration. Right ventricular systolic blood pressure (RVSBP) and RV weight were increased in group 2 compared to group 1, reduced in groups 3 and 4 compared to group 2, and further reduced in group 5, whereas arterial-oxygen saturation showed an opposite pattern (all p<0.001). Pulmonary damage severity (thickened alveolar septum and pulmonary arteriolar wall, decreased alveolar-sac numbers), number of CD3+ cells, and protein expressions of inflammatory (MMP-9, NF-κB, VCAM-1, angiotensin II-receptor), apoptotic (Bax, caspase 3, cleaved PARP), and fibrotic (TGF-β, Smad3) biomarkers showed an identical pattern compared to that of RVSBP, whereas pulmonary expressions of anti-apoptotic (Bcl-2) and anti-fibrotic (BMP-2, Smad1/5) biomarkers displayed a reverse pattern (all p<0.01). The protein expressions of RV damage markers (BNP, caspase 3) were increased, whereas expression of biomarker for RV functional preservation (Cx43) was reduced in group 2 compared with group 1, elevated in groups 3 and 4 compared to group 2, and further increased in group 5 (all p<0.01). Combined therapy with nicorandil and colchicine is superior to either alone in attenuating MCT-induced PAH in rats.
Collapse
Affiliation(s)
- Fan-Yen Lee
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hutchinson KR, Guggilam A, Cismowski MJ, Galantowicz ML, West TA, Stewart JA, Zhang X, Lord KC, Lucchesi PA. Temporal pattern of left ventricular structural and functional remodeling following reversal of volume overload heart failure. J Appl Physiol (1985) 2011; 111:1778-88. [PMID: 21885799 DOI: 10.1152/japplphysiol.00691.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.
Collapse
Affiliation(s)
- Kirk R Hutchinson
- Center for Cardiovascular and Pulmonary Research, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Calvieri C, Rubattu S, Volpe M. Molecular mechanisms underlying cardiac antihypertrophic and antifibrotic effects of natriuretic peptides. J Mol Med (Berl) 2011; 90:5-13. [PMID: 21826523 DOI: 10.1007/s00109-011-0801-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/16/2011] [Accepted: 08/02/2011] [Indexed: 01/01/2023]
Abstract
Natriuretic peptides (NPs) exert well-characterized protective effects on the cardiovascular system, such as vasorelaxation, natri- and diuresis, increase of endothelial permeability, and inhibition of renin-angiotensin-aldosterone system. It has been reported that they also possess antihypertrophic and antifibrotic properties and contribute actively to cardiac remodeling. As a consequence, they are involved in several aspects of cardiovascular diseases. Antihypertrophic and antifibrotic actions of NPs appear to be mediated by specific signaling pathways within a more complex cellular network. Elucidation of the molecular mechanisms underlying the effects of NPs on cardiac remodeling represents an important research objective in order to gain more insights on the complex network leading to cardiac hypertrophy, ventricular dysfunction, and transition to heart failure, and in the attempt to develop novel therapeutic agents. The aim of the present article is to review well-characterized molecular mechanisms underlying the antihypertrophic and antifibrotic effects of NPs in the heart that appear to be mainly mediated by guanylyl cyclase type A receptor. In particular, we discuss the calcineurin/NFAT, the sodium exchanger NHE-1, and the TGFβ1/Smad signaling pathways. The role of guanylyl cyclase type B receptor, along with the emerging functional significance of natriuretic peptide receptor type C as mediators of CNP antihypertrophic and antifibrotic actions in the heart are also considered.
Collapse
Affiliation(s)
- Camilla Calvieri
- Cardiology, Department of Clinical and Molecular Medicine, School of Medicine and Psychology, University Sapienza of Rome, Ospedale S. Andrea, Rome, Italy
| | | | | |
Collapse
|
13
|
Cordaillat M, Reboul C, Gaillard V, Lartaud I, Jover B, Rugale C. Plasma volume and arterial stiffness in the cardiac alterations associated with long-term high sodium feeding in rats. Am J Hypertens 2011; 24:451-7. [PMID: 21233801 DOI: 10.1038/ajh.2010.260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Rats fed an early and long-term high-salt diet (HS, NaCl 8%) developed significant cardiovascular hypertrophy without major changes in blood pressure. The mechanism of this cardiac hypertrophy has not been yet elucidated. METHODS In the present work, we assessed the influence of volume overload and arterial stiffness on the structural and functional cardiac changes induced by a high salt feeding from weaning to 5 months of age in Sprague-Dawley rats. RESULTS Cardiac hypertrophy in HS rats was associated with clear augmentation in the size of left ventricular (LV) cardiomyocyte as compared with rats fed regular diet (NS). Echocardiography revealed a marked increase in relative wall thickness. Of note, no alteration of global and regional systolic and diastolic function was detected in HS rats. High sodium consumption was associated with a slight increase in aortic mean and pulse pressure (PP) without effect on pulse wave velocity (PWV) and elastic modulus. Plasma volume and central venous pressure were higher in HS than NS rats. Whereas plasma endothelin level was twofold higher in HS than in NS rats, LV endothelin level was similar in both groups. Treatment by the endothelin receptors blocker bosentan had no detectable effect on the changes induced by HS diet. CONCLUSIONS High sodium intake was associated with concentric cardiac hypertrophy without change of systolic and diastolic function. Aortic rigidity was not a determinant of cardiac hypertrophy. Beside a likely direct effect of sodium on cardiovascular system the slight increase in arterial pressure and plasma volume play a role.
Collapse
|
14
|
Cavallero S, González GE, Seropian IM, Cerrudo CS, Matorra F, Morales C, Hertig CM, Puyó AM, Fernández BE, Gelpi RJ. Ventricular function and natriuretic peptides in sequentially combined models of hypertension. Am J Physiol Heart Circ Physiol 2010; 298:H1290-9. [PMID: 20139323 DOI: 10.1152/ajpheart.00911.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemodynamic parameters and natriuretic peptide levels were evaluated in cardiac hypertrophy produced by sequentially applied renovascular (RV) and deoxycorticosterone acetate-salt (DS) models of hypertension. We studied hypertensive rats by RV or DS treatment at 2 and 4 wk, as well as by the combination of 2 wk of each treatment in an inverse sequence: RV 2 wk/DS 2 wk (RV2/DS2) and DS 2 wk/RV 2 wk (DS2/RV2). The in vivo cardiac function, interstitial fibrosis, and synthesis and secretion of types A (ANP) and B (BNP) natriuretic peptides were monitored in hypertensive models compared with their corresponding sham (Sh2, Sh4). There were no differences in relaxation parameters among RV or DS groups and combined treatments. Left ventricular +dP/dt(max) increased only in RV4 (P < 0.01 vs. Sh4), and this increase was abolished in RV2/DS2. Interstitial collagen concentration increased after 4 wk in both RV4 and RV2/DS2 groups. Although there were no changes in collagen concentration in either DS2 or DS4 groups, clipping after 2 wk of DS (DS2/RV2) remarkably stimulated interstitial fibrosis (P < 0.01 vs. DS2). Plasma BNP increased in RV treatment at 4 wk (P < 0.001 vs. Sh4), but not in DS. Interestingly, RV applied after the 2 wk of DS treatment induced a marked increase in BNP levels (P < 0.001 vs. Sh4). In this regard, plasma BNP appears to be a reliable indicator of pressure overload. Our results suggest that the second stimulus of mechanical overload in combined models of hypertension determines the evolution of hypertrophy and synthesis and secretion of ANP and BNP.
Collapse
Affiliation(s)
- Susana Cavallero
- Department of Pathophysiology, Institute of Pathophysiology and Clinical Biochemistry, University of Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kramer F, Sandner P, Klein M, Krahn T. Plasma concentrations of matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1 and osteopontin reflect severity of heart failure in DOCA-salt hypertensive rat. Biomarkers 2008; 13:270-81. [PMID: 18415800 DOI: 10.1080/13547500801903123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The matrix metalloproteinases (MMPs) and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs) play a key role in extracellular matrix maintenance and are altered in the failing heart, both in experimental models and in chronic end-stage heart failure in humans. As the common diagnostic markers of heart failure, atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) primarily reflect increased pressure loading, determination of soluble, heart-derived MMPs and TIMPs in plasma, as well as the determination of the emerging fibrosis marker osteopontin (OPN) might be valuable tools for detecting heart fibrosis. In this study the effect of spironolactone treatment on plasma MMP-2, TIMP-1 and OPN levels was assessed in a heart failure animal model. Unilaterally nephrectomized Sprague Dawley rats received subcutaneous injection of 100 mg deoxycorticosterone acetate (DOCA) once a week and 1% (w/v) NaCl in drinking water. Blood pressure was monitored weekly and blood samples were collected after 1, 2 and 4 weeks. After 6 weeks, left ventricular contractility (LVC) and heart weight-to-body weight ratio (HW/BW) were assessed. DOCA treatment increased plasma MMP-2, TIMP-1 and OPN concentrations. Alterations of plasma marker levels were correlated with changes of HW/BW and paralleled impaired LVC. Furthermore, beneficial effects of spironolactone treatment were observed. In DOCA-salt hypertensive rats, plasma concentrations of MMP-2, TIMP-1 and OPN reflected heart failure associated with haemodynamic, functional and morphological changes. Based on these findings, it appears reasonable to use plasma markers of fibrosis to monitor the development of heart failure.
Collapse
Affiliation(s)
- Frank Kramer
- Institute for Target Discovery-Biomarker, Bayer HealthCare AG, Wuppertal, Germany.
| | | | | | | |
Collapse
|
16
|
Michea L, Villagrán A, Urzúa A, Kuntsmann S, Venegas P, Carrasco L, Gonzalez M, Marusic ET. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and prevents oxidative stress in uremic rats. Hypertension 2008; 52:295-300. [PMID: 18591458 DOI: 10.1161/hypertensionaha.107.109645] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic renal failure causes left ventricular hypertrophy, but the molecular mechanisms involved remain unknown. We, therefore, investigated whether the mineralocorticoid receptor is implicated in the cardiac hypertrophy observed in uremic rats and whether mineralocorticoid receptor blockade could be protective in chronic renal failure. Experimental groups were: control rats, uremic rats (NPX) with 5/6 nephrectomy (5 weeks), and NPX rats fed with spironolactone for 5 weeks. Systolic blood pressure was increased in both NPX rats and NPX rats fed with spironolactone for 5 weeks. Echocardiography revealed concentric left ventricular hypertrophy in uremia, which was attenuated by spironolactone. Enlarged cardiomyocyte size was observed in both left and right ventricles of NPX rats, an effect that was prevented by spironolactone. Mineralocorticoid receptor antagonism attenuated the increase of ventricular brain natriuretic peptide mRNA levels induced by nephrectomy. Left ventricular gene expressions of aldosterone synthase, mineralocorticoid receptor, and hydroxysteroid dehydrogenase type 2 were the same in the 3 groups, whereas gene expression of the glucocorticoid receptor was significantly diminished in chronic renal failure rats. No significant differences in cardiac aldosterone were observed between control rats and NPX rats, although NPX rats fed with spironolactone for 5 weeks showed increased plasma aldosterone levels. However, a significant increase in serum and glucocorticoid-inducible kinase-1 mRNA expression and protein was present in the NPX group; spironolactone treatment significantly reduced serum and glucocorticoid-inducible kinase-1 mRNA and protein in the left ventricle. Uremic rats exhibited a significant increase of superoxide production and reduced nicotinamide-adenine dinucleotide phosphate oxidase subunits expression (NOX-2, NOX-4, and p47(phox)) in the left ventricle, which was prevented by the mineralocorticoid receptor antagonist. Our findings provide evidence of the beneficial effects of spironolactone in cardiac hypertrophy and cardiac oxidative stress in chronic renal failure.
Collapse
Affiliation(s)
- Luis Michea
- Faculty of Medicine, Universidad Los Andes, S Carlos Apoquindo 2200, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|