1
|
Zhao Y, Yang M, Liu Y, Wan Z, Chen M, He Q, Liao Y, Shuai P, Shi J, Guo S. Pathogenesis of cardiovascular diseases: effects of mitochondrial CF6 on endothelial cell function. Mol Cell Biochem 2024:10.1007/s11010-024-05065-2. [PMID: 38985252 DOI: 10.1007/s11010-024-05065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiovascular disease (CVD) stands as a predominant global cause of morbidity and mortality, necessitating effective and cost-efficient therapies for cardiovascular risk reduction. Mitochondrial coupling factor 6 (CF6), identified as a novel proatherogenic peptide, emerges as a significant risk factor in endothelial dysfunction development, correlating with CVD severity. CF6 expression can be heightened by CVD risk factors like mechanical force, hypoxia, or high glucose stimuli through the NF-κB pathway. Many studies have explored the CF6-CVD relationship, revealing elevated plasma CF6 levels in essential hypertension, atherosclerotic cardiovascular disease (ASCVD), stroke, and preeclampsia patients. CF6 acts as a vasoactive and proatherogenic peptide in CVD, inducing intracellular acidosis in vascular endothelial cells, inhibiting nitric oxide (NO) and prostacyclin generation, increasing blood pressure, and producing proatherogenic molecules, significantly contributing to CVD development. CF6 induces an imbalance in endothelium-dependent factors, including NO, prostacyclin, and asymmetric dimethylarginine (ADMA), promoting vasoconstriction, vascular remodeling, thrombosis, and insulin resistance, possibly via C-src Ca2+ and PRMT-1/DDAH-2-ADMA-NO pathways. This review offers a comprehensive exploration of CF6 in the context of CVD, providing mechanistic insights into its role in processes impacting CVD, with a focus on CF6 functions, intracellular signaling, and regulatory mechanisms in vascular endothelial cells.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Yang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Youren Liu
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhengwei Wan
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mengchun Chen
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiumei He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Liao
- Department of Geriatric Medicine, School of Medicine and Life Science, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Shuai
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Shujin Guo
- Department of Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Yin J, You S, Li N, Jiao S, Hu H, Xue M, Wang Y, Cheng W, Liu J, Xu M, Yan S, Li X. Lung-specific RNA interference of coupling factor 6, a novel peptide, attenuates pulmonary arterial hypertension in rats. Respir Res 2016; 17:99. [PMID: 27491388 PMCID: PMC4973057 DOI: 10.1186/s12931-016-0409-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/08/2016] [Indexed: 02/04/2023] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease associated with high morbidity and mortality rates. However, the exact regulatory mechanism of PAH is unknown. Although coupling factor 6 (CF6) is known to function as a repressor, its role in PAH has not been explored. Here, we investigated the involvement of endogenous CF6 in the development of PAH. Methods PAH was induced with monocrotaline (MCT), as demonstrated by significant increases in pulmonary artery pressure and vessel wall thickness. The adeno-associated virus (AAV) carrying CF6 short hairpin RNA (shRNA) or control vector (2×1010 gp) was intratracheally transfected into the lungs of rats 2 weeks before or after MCT injection. Results A 2-6-fold increase in CF6 was observed in the lungs and circulation of the MCT-injected rats as confirmed by qRT-PCR and ELISA. Immunohistochemistry analysis revealed a small quantity of CF6 localized to endothelial cells (ECs) under physiological conditions spread to surrounding tissues in a paracrine manner in PAH lungs. Notably, CF6 shRNA effectively inhibited CF6 expression, abolished lung macrophage infiltration, reversed endothelial dysfunction and vascular remodeling, and ameliorated the severity of pulmonary hypertension and right ventricular dysfunction at 4 weeks both as a pretreatment and rescue intervention. In addition, the circulating and lung levels of 6-keto-PGF1a, a stable metabolite of prostacyclin, were reversed by CF6 inhibition, suggesting that the effect of CF6 inhibition may partly be mediated through prostacyclin. Conclusions CF6 contributes to the pathogenesis of PAH, probably in association with downregulation of prostacyclin. The blockage of CF6 might be applied as a novel therapeutic approach for PAH and PA remodeling. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0409-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Yin
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Shuling You
- Department of Pathology, Adicon Company, Wangkai Infectious Diseases Hospital of Zaozhuang City, Zaozhuang, Shandong, China
| | - Nannan Li
- Department of Emergency, Shandong Provincial Qianfoshan Hospital, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Shouhai Jiao
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Mei Xue
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Ye Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Wenjuan Cheng
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - Min Xu
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China.
| | - Xiaolu Li
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Lixia District, Jinan, Shandong Province, China. .,Department of Emergency, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
4
|
Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species. Basic Res Cardiol 2016; 111:26. [PMID: 26992928 DOI: 10.1007/s00395-016-0546-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
Abstract
Traditionally, the mitochondria have been viewed as the cell's powerhouse, producing energy in the form of ATP. As a byproduct of ATP formation, the mitochondrial electron transport chain produces substantial amounts of reactive oxygen species (ROS). First thought to be toxic, recent literature indicates an important signaling function for mitochondria-derived ROS, especially in relation to cardiovascular disease pathogenesis. This has spawned an evolution to a more contemporary view of mitochondrial function as a dynamic organelle involved in key regulatory and cell survival processes. Beyond ROS, recent studies have identified a host of mitochondria-linked factors that influence the cellular and extracellular environments, including mitochondria-derived peptides, mitochondria-localized proteins, and the mitochondrial genome itself. Interestingly, many of these factors help orchestrate ROS homeostasis and ROS-related signaling. The paradigm defining the role of mitochondria in the vasculature needs to be updated yet again to include these key signaling factors, which serves as the focus of the current review. In describing these novel signaling factors, we pay specific attention to their influence on endothelial homeostasis. Therapies targeting these pathways are discussed, as are emerging research directions.
Collapse
|
6
|
Lavigne R, Briers Y, Hertveldt K, Robben J, Volckaert G. Identification and characterization of a highly thermostable bacteriophage lysozyme. Cell Mol Life Sci 2004; 61:2753-9. [PMID: 15549178 DOI: 10.1007/s00018-004-4301-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pseudomonas aeruginosa bacteriophage phiKMV is a T7-like lytic phage. Liquid chromatography-mass spectrometry of the structural proteins revealed gene product 36 (gp36) as part of the phiKMV phage particle. The presence of a lysozyme domain in the C terminal of this protein (gp36C) was verified by turbidimetric assays on chloroform-treated P. aeruginosa PAO1 and Escherichia coli WK6 cells. The molecular mass (20,884 Da) and pI (6.4) of recombinant gp36C were determined, as were the optimal enzymatic conditions (pH 6.0 in 16.7 mM phosphate buffer) and activity (4800 U/mg). Recombinant gp36C is a highly thermostable lysozyme, retaining 26% of its activity after 2 h at 100 degrees C and 21% after autoclaving. This thermostability could prove an interesting characteristic for food conservation technology.
Collapse
Affiliation(s)
- R Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | | | | | | | | |
Collapse
|