1
|
Personnic E, Gerard G, Poilbout C, Jetten AM, Gómez AM, Benitah JP, Perrier R. Circadian regulation of Ca V 1.2 expression by RORα in the mouse heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575657. [PMID: 38293155 PMCID: PMC10827087 DOI: 10.1101/2024.01.15.575657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background In addition to show autonomous beating rhythmicity, the physiological functions of the heart present daily periodic oscillations. Notably the ventricular repolarization itself varies throughout the circadian cycle which was mainly related to the periodic expression of K + channels. However, the involvement of the L-type Ca 2+ channel (Ca V 1.2 encoded by Cacna1c gene) in these circadian variations remains elusive. Methods We used a transgenic mouse model (PCa-luc) that expresses the luciferase reporter under the control of the cardiac Cacna1c promoter and analyzed promoter activity by bioluminescent imaging, qPCR, immunoblot, Chromatin immunoprecipitation assay (ChIP) and Ca V 1.2 activity. Results Under normal 12:12h light-dark cycle, we observed in vivo a biphasic diurnal variation of promoter activities peaking at 9 and 19.5 Zeitgeber time (ZT). This was associated with a periodicity of Cacna1c mRNA levels preceding 24-h oscillations of Ca V 1.2 protein levels in ventricle (with a 1.5 h phase shift) but not in atrial heart tissues. The periodicity of promoter activities and Ca V 1.2 proteins, which correlated with biphasic oscillations of L-type Ca 2+ current conductance, persisted in isolated ventricular cardiomyocytes from PCa-Luc mice over the course of the 24-h cycle, suggesting an endogenous cardiac circadian regulation. Comparison of 24-h temporal patterns of clock gene expressions in ventricles and atrial tissues of the same mice revealed conserved circadian oscillations of the core clock genes except for the retinoid-related orphan receptor α gene (RORα), which remained constant throughout the course of a day in atrial tissues. In vitro we found that RORα is recruited to two specific regions on the Cacna1c promoter and that incubation with specific RORα inhibitor disrupted 24-h oscillations of ventricular promoter activities and Ca V 1.2 protein levels. Similar results were observed for pore forming subunits of the K + transient outward currents, K V 4.2 and K V 4.3. Conclusions These findings raise the possibility that the RORα-dependent rhythmic regulation of cardiac Ca V 1.2 and K V 4.2/4.3 throughout the daily cycle may play an important role in physiopathology of heart function.
Collapse
|
2
|
Abstract
Driven by autonomous molecular clocks that are synchronized by a master pacemaker in the suprachiasmatic nucleus, cardiac physiology fluctuates in diurnal rhythms that can be partly or entirely circadian. Cardiac contractility, metabolism, and electrophysiology, all have diurnal rhythms, as does the neurohumoral control of cardiac and kidney function. In this review, we discuss the evidence that circadian biology regulates cardiac function, how molecular clocks may relate to the pathogenesis of heart failure, and how chronotherapeutics might be applied in heart failure. Disrupting molecular clocks can lead to heart failure in animal models, and the myocardial response to injury seems to be conditioned by the time of day. Human studies are consistent with these findings, and they implicate the clock and circadian rhythms in the pathogenesis of heart failure. Certain circadian rhythms are maintained in patients with heart failure, a factor that can guide optimal timing of therapy. Pharmacologic and nonpharmacologic manipulation of circadian rhythms and molecular clocks show promise in the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Nadim El Jamal
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah L. Teegarden
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Translational Pharmacology, Bielefeld University, Bielefeld, Germany
| | - Garret FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
3
|
Teles MC, Oliveira Portes AM, Campos Coelho BI, Resende LT, Isoldi MC. Cardiac changes in spontaneously hypertensive rats: Modulation by aerobic exercise. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:109-124. [PMID: 36347337 DOI: 10.1016/j.pbiomolbio.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/10/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Systemic arterial hypertension is a multifactorial clinical condition characterized by high and sustained levels of blood pressure. For a better understanding of the pathophysiology of hypertension, studies are conducted with spontaneously hypertensive animals, which allow the investigation of physiological changes that in most cases cannot be studied in humans. In these animals, myocardial remodeling, increased pro-inflammatory markers, redox imbalance and contractile dysfunctions that lead to changes in cardiac function can be observed. However, it can be inferring that aerobic training improves cardiac function and cardiomyocyte contractility, in addition to controlling inflammation and reducing oxidative stress in cardiac muscle, despite this, the precise mechanisms by which physical exercise improves cardiovascular control are not fully understood. In this review, we provide an overview of the pathophysiological changes that affect the heart of spontaneously hypertensive animals and their modulation by aerobic exercise.
Collapse
Affiliation(s)
- Maria Cecília Teles
- Laboratory of Cell Signaling, Department Pharmacy, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil.
| | | | - Bianca Iara Campos Coelho
- Laboratory of Cell Signaling, Department Nutrition, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Letícia Teresinha Resende
- Laboratory of Cell Signaling, Department of General Biology, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Mauro Cesar Isoldi
- Laboratory of Cell Signaling, Department of General Biology, Federal University of Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| |
Collapse
|
4
|
Wang Z, Tapa S, Francis Stuart SD, Wang L, Bossuyt J, Delisle BP, Ripplinger CM. Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology. Circ Arrhythm Electrophysiol 2020; 13:e008093. [PMID: 32706628 DOI: 10.1161/circep.119.008093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown. METHODS Hearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group). RESULTS Adult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding β1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts. CONCLUSIONS Isolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Srinivas Tapa
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Samantha D Francis Stuart
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Julie Bossuyt
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington (B.P.D.)
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| |
Collapse
|
5
|
Chen L, Zhang B, Yang L, Bai YG, Song JB, Ge YL, Ma HZ, Cheng JH, Ma J, Xie MJ. BMAL1 Disrupted Intrinsic Diurnal Oscillation in Rat Cerebrovascular Contractility of Simulated Microgravity Rats by Altering Circadian Regulation of miR-103/Ca V1.2 Signal Pathway. Int J Mol Sci 2019; 20:ijms20163947. [PMID: 31416128 PMCID: PMC6720455 DOI: 10.3390/ijms20163947] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
The functional and structural adaptations in cerebral arteries could be one of the fundamental causes in the occurrence of orthostatic intolerance after space flight. In addition, emerging studies have found that many cardiovascular functions exhibit circadian rhythm. Several lines of evidence suggest that space flight might increase an astronaut’s cardiovascular risks by disrupting circadian rhythm. However, it remains unknown whether microgravity disrupts the diurnal variation in vascular contractility and whether microgravity impacts on circadian clock system. Sprague-Dawley rats were subjected to 28-day hindlimb-unweighting to simulate the effects of microgravity on vasculature. Cerebrovascular contractility was estimated by investigating vasoconstrictor responsiveness and myogenic tone. The circadian regulation of CaV1.2 channel was determined by recording whole-cell currents, evaluating protein and mRNA expressions. Then the candidate miRNA in relation with Ca2+ signal was screened. Lastly, the underlying pathway involved in circadian regulation of cerebrovascular contractility was determined. The major findings of this study are: (1) The clock gene BMAL1 could induce the expression of miR-103, and in turn modulate the circadian regulation of CaV1.2 channel in rat cerebral arteries at post-transcriptional level; and (2) simulated microgravity disrupted intrinsic diurnal oscillation in rat cerebrovascular contractility by altering circadian regulation of BMAL1/miR-103/CaV1.2 signal pathway.
Collapse
Affiliation(s)
- Li Chen
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Lu Yang
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Ji-Bo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Ling Ge
- First Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Hong-Zhe Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Rodrigo GC, Denniff M. Time-of-day variation in vascular function. Exp Physiol 2018; 101:1030-4. [PMID: 27474265 DOI: 10.1113/ep085780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 01/20/2023]
Abstract
What is the topic of this review? This report looks at the role of endothelial nitric oxide signalling in the time-of-day variation in vasoconstriction of resistance vessels. What advances does it highlight? It highlights a time-of-day variation in contraction of mesenteric arteries, characterized by a reduced contractile response to either phenylephrine or high K(+) and increased relaxation in response to acetylcholine during the active period. This time-of-day variation in contraction results from a difference in endothelial nitric oxide synthase (eNOS) signalling that correlates with levels of eNOS expression, which peak during the active period and may have far reaching physiological consequences beyond regulation of blood pressure. There is a strong time-of-day variation in the vasoconstriction in response to sympathetic stimulation that may contribute to the time-of-day variation in blood pressure, which is characterized by a dip in blood pressure during the individual's rest period when sympathetic activity is low. Vasoconstriction is known to be regulated tightly by nitric oxide signalling from the endothelial cells, so we have looked at the effect of time-of-day on levels of endothelial nitric oxide synthase (eNOS) and vascular contractility. Mesenteric arteries isolated from the nocturnal rat exhibit a time-of-day variation in their contractile response to α1 -adrenoreceptor and muscarinic activation, which is characterized by a reduced vasoconstriction in response to phenylephrine and enhanced vasodilatation in response to acetylcholine during the rat's active period at night. An increase in eNOS signalling during the active period is responsible for this time-of-day difference in response to phenylephrine and acetylcholine and correlates with the large increase in eNOS expression (mRNA and protein) during the active period, possibly driven by the presence of a functioning peripheral circadian clock. This increase in eNOS signalling may function to limit the increase in peripheral resistance and therefore blood pressure during the increased sympathetic activity.
Collapse
Affiliation(s)
- G C Rodrigo
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| | - M Denniff
- Department of Cardiovascular Sciences, University of Leicester, Glenfield General Hospital, Leicester, UK
| |
Collapse
|
7
|
Potucek P, Radik M, Doka G, Kralova E, Krenek P, Klimas J. mRNA levels of circadian clock components Bmal1 and Per2 alter independently from dosing time-dependent efficacy of combination treatment with valsartan and amlodipine in spontaneously hypertensive rats. Clin Exp Hypertens 2017; 39:754-763. [PMID: 28665713 DOI: 10.1080/10641963.2017.1324480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronopharmacological effects of antihypertensives play a role in the outcome of hypertension therapy. However, studies produce contradictory findings when combination of valsartan plus amlodipine (VA) is applied. Here, we hypothesized different efficacy of morning versus evening dosing of VA in spontaneously hypertensive rats (SHR) and the involvement of circadian clock genes Bmal1 and Per2. We tested the therapy outcome in short-term and also long-term settings. SHRs aged between 8 and 10 weeks were treated with 10 mg/kg of valsartan and 4 mg/kg of amlodipine, either in the morning or in the evening with treatment duration 1 or 6 weeks and compared with parallel placebo groups. After short-term treatment, only morning dosing resulted in significant blood pressure (BP) control (measured by tail-cuff method) when compared to placebo, while after long-term treatment, both dosing groups gained similar superior results in BP control against placebo. However, mRNA levels of Bmal1 and Per2 (measured by RT-PCR) exhibited an independent pattern, with similar alterations in left and right ventricle, kidney as well as in aorta predominantly in groups with evening dosing in both, short-term and also long-term settings. This was accompanied by increased cardiac mRNA expression of plasminogen activator inhibitor-1. In summary, morning dosing proved to be advantageous due to earlier onset of antihypertensive action; however, long-term treatment was demonstrated to be effective regardless of administration time. Our findings also suggest that combination of VA may serve as an independent modulator of circadian clock and might influence disease progression beyond the primary BP lowering effect.
Collapse
Affiliation(s)
- Peter Potucek
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Michal Radik
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Gabriel Doka
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Eva Kralova
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Peter Krenek
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| | - Jan Klimas
- a Faculty of Pharmacy, Comenius University, Department Pharmacology and Toxicology , Comenius University Bratislava , Bratislava , Slovak Republic
| |
Collapse
|
8
|
Chen Y, Zhu D, Yuan J, Han Z, Wang Y, Qian Z, Hou X, Wu T, Zou J. CLOCK-BMAL1 regulate the cardiac L-type calcium channel subunit CACNA1C through PI3K-Akt signaling pathway. Can J Physiol Pharmacol 2016; 94:1023-32. [PMID: 27376484 DOI: 10.1139/cjpp-2015-0398] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heterodimerized transcription factors CLOCK-BMAL1 regulate the cardiomyocyte circadian rhythms. The L-type calcium currents play important role in the cardiac electrogenesis and arrhythmogenesis. Whether and how the CLOCK-BMAL1 regulate the cardiac L-type calcium channels are yet to be determined. The functions of the L-type calcium channels were evaluated with patch clamping techniques. Recombinant adenoviruses of CLOCK and BMAL1 were used in the expression experiments. We reported that the expressions and functions of CACNA1C (the α-subunit of the L-type calcium channels) showed circadian rhythms, with the peak at zeitgeber time 3 (ZT3). The endocardial action potential durations 90 (APD90) were correspondingly longer at ZT3. The protein levels of the phosphorylated Akt at threonine 308 (pAkt T308) also showed circadian rhythms. Overexpressions of CLOCK-BMAL1 significantly reduced the levels of CACNA1C while increasing the levels of pAkt T308 and pik3r1. Furthermore, the inhibitory effects of CLOCK-BMAL1 on CACNA1C could be abolished by the Akt inhibitor MK2206 or the PDK1 inhibitor GSK2334470. Collectively, our findings suggested that the expressions of the cardiac CACNA1C were under the CLOCK-BMAL1 regulation, probably through the PI3K-Akt signal pathway.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Wuhan Asia Heart Hospital, Hubei, China
| | - Didi Zhu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiamin Yuan
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhonglin Han
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Wang
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiyong Qian
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Hou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Tingting Wu
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiangang Zou
- Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Alibhai FJ, Tsimakouridze EV, Reitz CJ, Pyle WG, Martino TA. Consequences of Circadian and Sleep Disturbances for the Cardiovascular System. Can J Cardiol 2015; 31:860-72. [DOI: 10.1016/j.cjca.2015.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/01/2022] Open
|
10
|
Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 2014; 307:R121-37. [PMID: 24789993 DOI: 10.1152/ajpregu.00011.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
Collapse
|