1
|
Zhang Y, Liu J, Zhou L, Hao S, Ding Z, Xiao L, Zhou M. Exosomal Small RNA Sequencing Uncovers Dose-Specific MiRNA Markers for Ionizing Radiation Exposure. Dose Response 2020; 18:1559325820926735. [PMID: 32528236 PMCID: PMC7263154 DOI: 10.1177/1559325820926735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Acute exposure to ionizing radiation (IR) is hazardous or even lethal. Accurate estimation of the doses of IR exposure is critical to wisely determining the following treatments. Exosomes are nanoscale vesicles harboring biomolecules and mediate the communications among cells and tissues to influence biological processes. Screening out the microRNAs (miRNAs) contained in exosomes as biomarkers can be useful for estimating the IR exposure doses and exploring the correlation between these miRNAs and the occurrence of disease. Methods: We treated mice with 2.0, 6.5, and 8.0 Gy doses of IR and collected the mice sera at 0, 24, 48, and 72 hours after exposure. Then, the serum exosomes were isolated by ultracentrifuge and the small RNA portion was extracted for sequencing and the following bioinformatics analysis. Qualitative polymerase chain reaction was performed to validate the potential dose-specific markers. Results: Fifty-six miRNAs (31 upregulated, 25 downregulated) were differentially expressed after exposure of the above 3 IR doses and may act as common IR exposure miRNA markers. Bioinformatic analysis also identified several dosage-specific responsive miRNAs. Importantly, IR-induced miR-151-3p and miR-128-3p were significantly and stably increased at 24 hours in different mouse strains with distinct genetic background after exposed to 8.0 Gy of IR. Conclusion: Our study shows that miR-151-3p and miR-128-3p can be used as dose-specific biomarkers of 8.0 Gy IR exposure, which can be used to determine the exposure dose by detecting the amount of the 2 miRNAs in serum exosomes.
Collapse
Affiliation(s)
- Ying Zhang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuai Hao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lin Xiao
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Rutten MJ, Laraway B, Gregory CR, Xie H, Renken C, Keese C, Gregory KW. Rapid assay of stem cell functionality and potency using electric cell-substrate impedance sensing. Stem Cell Res Ther 2015; 6:192. [PMID: 26438432 PMCID: PMC4594964 DOI: 10.1186/s13287-015-0182-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 07/30/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine studies using autologous bone marrow mononuclear cells (BM-MNCs) have shown improved clinical outcomes that correlate to in vitro BM-MNC invasive capacity. The current Boyden-chamber assay for testing invasive capacity is labor-intensive, provides only a single time point, and takes 36 hours to collect data and results, which is not practical from a clinical cell delivery perspective. To develop a rapid, sensitive and reproducible invasion assay, we employed Electric Cell-substrate Impedance Sensing (ECIS) technology. Chemokine-directed BM-MNC cell invasion across a Matrigel-coated Transwell filter was measurable within minutes using the ECIS system we developed. This ECIS-Transwell chamber system provides a rapid and sensitive test of stem and progenitor cell invasive capacity for evaluation of stem cell functionality to provide timely clinical data for selection of patients likely to realize clinical benefit in regenerative medicine treatments. This device could also supply robust unambiguous, reproducible and cost effective data as a potency assay for cell product release and regulatory strategies.
Collapse
Affiliation(s)
- Michael J Rutten
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Bryan Laraway
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Cynthia R Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,VA Portland Health Care System, 3710 SW US Veterans Hospital Road, 97239, Portland, OR, USA. .,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Hua Xie
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| | - Christian Renken
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Charles Keese
- Applied BioPhysics, Inc., 185 Jordan Road, 12180, Troy, NY, USA.
| | - Kenton W Gregory
- Center for Regenerative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA. .,Department of Biomedical Engineering, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|