1
|
Castro MED, Cunha LL, Ward LS. Narrative overview of possible preventive measures for differentiated thyroid carcinomas. Heliyon 2025; 11:e41284. [PMID: 39811343 PMCID: PMC11731471 DOI: 10.1016/j.heliyon.2024.e41284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
There is compelling evidence that although the increased availability of sensitive imaging is the main cause of the increasing incidence of differentiated thyroid cancer, particularly the papillary type, there are other factors involved. Despite the acknowledged role of genetic and certain lifestyle factors, comprehensive studies delineating the interactions between multiple risk factors and the mechanistic pathways involved are scarce. A greater understanding of both modifiable and non-modifiable risk factors for thyroid cancer is critical to prevent and manage the disease and could provide a scientific basis for future research into more appropriate lifestyles and living environments for people at high risk. We reviewed the main endogenous factors that, although considered non-modifiable, can help identify at-risk individuals. In addition, we offer a narrative review of other putative causes and make recommendations for measures to prevent the emergence of new cases of differentiated thyroid cancer.
Collapse
Affiliation(s)
- Maria Eduarda de Castro
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
2
|
Kim BG, Choi HS, Choe YH, Jeon HM, Heo JY, Cheon YH, Kang KM, Lee SI, Jeong BK, Kim M. Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes. Immune Netw 2024; 24:e32. [PMID: 39246617 PMCID: PMC11377951 DOI: 10.4110/in.2024.24.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19+ B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
Collapse
Affiliation(s)
- Bo-Gyu Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yong-Ho Choe
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Ji Yeon Heo
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
3
|
Sproull M, Wilson E, Miller R, Camphausen K. The Future of Radioactive Medicine. Radiat Res 2023; 200:80-91. [PMID: 37141143 PMCID: PMC10466314 DOI: 10.1667/rade-23-00031.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
The discovery of X rays in the late 19th century heralded the beginning of a new age in medicine, and the advent of channeling the power of radiation to diagnose and treat human disease. Radiation has been leveraged in medicine in a multitude of ways and is a critical element of cancer care including screening, diagnosis, surveillance, and interventional treatments. Modern radiotherapy techniques include a multitude of methodologies utilizing both externally and internally delivered radiation from a variety of approaches. This review provides a comprehensive overview of contemporary radiotherapy methodologies, the field of radiopharmaceuticals and theranostics, effects of low dose radiation and highlights the phenomena of fear of exposure to radiation and its impact in modern medicine.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - E. Wilson
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - R.W. Miller
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
4
|
Supawat B, Vorasiripreecha W, Wattanapongpitak S, Kothan S, Tungjai M. Effects of low-dose radiation on human blood components after in vitro exposure to gamma radiation from 137Cs radioactivity. Appl Radiat Isot 2023; 192:110577. [PMID: 36459900 DOI: 10.1016/j.apradiso.2022.110577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
This current study was designed to determine the effects of in vitro exposure to radioactive cesium-137 on human blood components. Whole blood samples were given a radiation dose of 0.02, 0.05, 0.1, 0.2, and 0.3 mGy of gamma radiation using a 137Cs radioactive standard source. The whole blood samples that were exposed to 0 mGy served as sham-controls. The spectrofluoroscopic technique was used to determine the autofluorescence spectrum of protein in plasma or red blood cells by using excitation wavelength and range of emission wavelengths at 280 nm and 300-550 nm, respectively. The hemolysis of red blood cells was evaluated by determination of the release of hemoglobin from the red blood cells to the supernatant. Complete blood counts were also determined in whole blood. The results showed that there was no change in the ratio of fluorescence emission intensity at 340 nm of wavelength of protein extract from irradiated whole blood or red blood cells compared to the corresponding non-irradiated control. The hemolysis value did not change in irradiated whole blood when compared to the corresponding non-irradiated group. In addition, complete blood count values in irradiated groups did not differ from non-irradiated group. These current results suggested that there were no harmful effects of the low-dose gamma radiation from radioactive 137Cs on blood components when human whole blood was exposed to gamma radiation in an in vitro condition.
Collapse
Affiliation(s)
- Benjamaporn Supawat
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watcharit Vorasiripreecha
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sakornniya Wattanapongpitak
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Montree Tungjai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Radiation Research and Medical Imaging Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Huang CS, Qiu LZ, Yue L, Wang NN, Liu H, Deng HF, Ni YH, Ma ZC, Zhou W, Gao Y. Low-dose radiation-induced demethylation of 3β-HSD participated in the regulation of testosterone content. J Appl Toxicol 2021; 42:529-539. [PMID: 34550611 DOI: 10.1002/jat.4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022]
Abstract
The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3β-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3β-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3β-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3β-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.
Collapse
Affiliation(s)
- Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lanxin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Demeter SJ. Economic Considerations for Radiation Protection in Medical Settings-Is It Time for a New Paradigm? HEALTH PHYSICS 2021; 120:217-223. [PMID: 32740141 DOI: 10.1097/hp.0000000000001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT The full ALARA principle includes "as low as reasonably achievable" taking social and economic factors into consideration. The International Commission on Radiological Protection advises a conventional cost benefit approach (e.g., cost per monetized averted stochastic effects or years of life saved) to consider economic factors. Given small incremental radiation dose reductions to patients, workers, or the public that may be realized in medical settings and the correspondingly small changes to theoretical stochastic effects, a conventional cost benefit approach is less than ideal. This is illustrated in the case studies presented in this paper. Alternate approaches, such as cost per unit of radiation dose averted (e.g., $/μSv averted), cancer induction/fatality probabilistic thresholds, or thresholds relative to natural background radiation may be alternate options. However, the decision regarding what is a "safe" level of radiation and what are reasonable costs to make it "safer" are driven by societal values and may vary from jurisdiction to jurisdiction.
Collapse
Affiliation(s)
- Sandor J Demeter
- Faculty of Health Sciences, College of Medicine, Department of Radiology, University of Manitoba, Winnipeg, Manitoba
| |
Collapse
|
7
|
Evaluation of Anti-Tumor Effects of Whole-Body Low-Dose Irradiation in Metastatic Mouse Models. Cancers (Basel) 2020; 12:cancers12051126. [PMID: 32365904 PMCID: PMC7281283 DOI: 10.3390/cancers12051126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Low-dose irradiation (LDI) has recently been shown to have various beneficial effects on human health, such as on cellular metabolic activities, DNA repair, antioxidant activity, homeostasis potency, and immune activation. Although studies on the immunogenic effects of LDI are rapidly accumulating, clinical trials for cancer treatment are considered premature owing to the lack of available preclinical results and protocols. Here, we aim to investigate anti-tumor and anti-metastatic effects of whole-body LDI in several tumor-bearing mouse models. Mice were exposed to single or fractionated whole-body LDI prior to tumor transplantation, and tumor growth and metastatic potential were determined, along with analysis of immune cell populations and expression of epithelial-mesenchymal transition (EMT) markers. Whole-body fractionated-LDI decreased tumor development and lung metastasis not only by infiltration of CD4+, CD8+ T-cells, and dendritic cells (DCs) but also by attenuating EMT. Moreover, a combination of whole-body LDI with localized high-dose radiation therapy reduced the non-irradiated abscopal tumor growth and increased infiltration of effector T cells and DCs. Therefore, whole-body LDI in combination with high-dose radiation therapy could be a potential therapeutic strategy for treating cancer.
Collapse
|
8
|
Tungjai M, Sopapang J, Tasri N, Osothsongkroh C, Jantarato A, Kothan S. The Effects of Medical Diagnostic Low Dose X-rays after in vitro Exposure of Human Red Blood Cells: Hemolysis and Osmotic Fragility. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2019; 11:237-243. [DOI: 10.1007/s13530-019-0409-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
|
9
|
Ricci PF, Tharmalingam S. Ionizing radiations epidemiology does not support the LNT model. Chem Biol Interact 2019; 301:128-140. [DOI: 10.1016/j.cbi.2018.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
|
10
|
Affiliation(s)
- Leonard Berlin
- From the Department of Radiology, Skokie Hospital, 9600 Gross Point Rd, Skokie, IL 60076; Department of Radiology, Rush University, Chicago, Ill; and Department of Radiology, University of Illinois at Chicago, Chicago, Ill
| |
Collapse
|
11
|
Callen J, McKenna T. Saving Lives and Preventing Injuries From Unjustified Protective Actions-Method for Developing a Comprehensive Public Protective Action Strategy for a Severe NPP Emergency. HEALTH PHYSICS 2018; 114:511-526. [PMID: 29578899 DOI: 10.1097/hp.0000000000000801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
During the response to the Fukushima Daiichi nuclear power plant (FDNPP) emergency, about 50 patients died during or shortly after an evacuation when they were not provided with the needed medical support. In addition, it has been shown that during the FDNPP emergency there were increases in mortality rates among the elderly due to long-term dislocation as a result of evacuation and relocation orders and an inability to stay in areas where residents were advised to shelter for extended periods. These deaths occurred even though the possible radiation exposure to the public was too low to result in radiation-induced deaths, injuries, or a meaningful increase in the cancer rate, even if no protective actions had been taken. These problems are not unique to the FDNPP emergency and would be expected if the recommendations of many organizations were followed. Neither the International Commission on Radiological Protection (ICRP), the U.S. Nuclear Regulatory Commission (NRC) nor the U.S Environmental Protection Agency (EPA) adequately take into consideration in their recommendations and analysis the non-radiological health impacts, such as deaths and injuries, that could result from protective actions. Furthermore, ICRP, NRC, EPA, and the U.S. Department of Homeland Security (DHS) call for taking protective actions at doses lower than those resulting in meaningful adverse radiation-induced health effects and do not state the doses at which such effects would be seen. Consequently, it would be impossible for decision makers and the public to balance all the hazards both from radiation exposure and protective actions when deciding whether a protective action is justified. What is needed, as is presented in this paper, is a method for developing a comprehensive protective action strategy that allows the public, decision makers, and others who must work together to balance the radiological with the non-radiological health hazards posed by protective actions, and to counter the exaggerated fear of radiation exposure that could lead to taking unjustified protective actions and adverse psychological, sociological, and other effects.
Collapse
|
12
|
Tungjai M, Phathakanon N, Rithidech KN. Effects of Medical Diagnostic Low-dose X Rays on Human Lymphocytes: Mitochondrial Membrane Potential, Apoptosis and Cell Cycle. HEALTH PHYSICS 2017; 112:458-464. [PMID: 28350700 DOI: 10.1097/hp.0000000000000647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Low-dose radiation is widely used across the world for the diagnosis of many diseases by means of a variety of imaging technologies. However, the harmful effects of exposure to low-dose radiation during medical examination remain controversial. The authors studied the effects of medical diagnostic low-dose x rays (i.e., 0.03, 0.05, or 0.1 mGy) after an in vitro exposure of human lymphocytes. Cells with no irradiation served as the non-irradiated control group. Three biological indicators were used to determine the effects of medical diagnostic low-dose x rays at 4, 8, 24, 48, and 72 h post-irradiation. These biological endpoints were mitochondrial membrane potential (ΔΨm), cell cycle, and apoptosis. Results indicated no changes in the ΔΨm, number of apoptotic cells, and cell cycle in lymphocytes exposed to these low doses of radiation, as compared to the corresponding non-irradiated lymphocytes at all harvest time-points. These results suggested that there were no harmful effects of the diagnostic low-dose x rays when human lymphocytes were exposed in an in vitro condition.
Collapse
Affiliation(s)
- Montree Tungjai
- *Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intawaroroj Rd., Sripoom, Chiang Mai, 50200, Thailand; †Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8691
| | | | | |
Collapse
|