1
|
de Lima MF, Lisboa MDO, Terceiro LEL, Rangel-Pozzo A, Mai S. Chromosome Territories in Hematological Malignancies. Cells 2022; 11:1368. [PMID: 35456046 PMCID: PMC9028803 DOI: 10.3390/cells11081368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Collapse
Affiliation(s)
- Matheus Fabiao de Lima
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná—PUCPR, Curitiba 80215-901, Brazil;
| | - Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
| | - Aline Rangel-Pozzo
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Sabine Mai
- Department of Physiology and Pathophysiology, CancerCare Manitoba Research Institute, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| |
Collapse
|
2
|
Sanders JT, Golloshi R, Das P, Xu Y, Terry PH, Nash DG, Dekker J, McCord RP. Loops, topologically associating domains, compartments, and territories are elastic and robust to dramatic nuclear volume swelling. Sci Rep 2022; 12:4721. [PMID: 35304523 PMCID: PMC8933507 DOI: 10.1038/s41598-022-08602-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Layers of genome organization are becoming increasingly better characterized, but less is known about how these structures respond to perturbation or shape changes. Low-salt swelling of isolated chromatin fibers or nuclei has been used for decades to investigate the structural properties of chromatin. But, visible changes in chromatin appearance have not been linked to known building blocks of genome structure or features along the genome sequence. We combine low-salt swelling of isolated nuclei with genome-wide chromosome conformation capture (Hi-C) and imaging approaches to probe the effects of chromatin extension genome-wide. Photoconverted patterns on nuclei during expansion and contraction indicate that global genome structure is preserved after dramatic nuclear volume swelling, suggesting a highly elastic chromosome topology. Hi-C experiments before, during, and after nuclear swelling show changes in average contact probabilities at short length scales, reflecting the extension of the local chromatin fiber. But, surprisingly, during this large increase in nuclear volume, there is a striking maintenance of loops, TADs, active and inactive compartments, and chromosome territories. Subtle differences after expansion are observed, suggesting that the local chromatin state, protein interactions, and location in the nucleus can affect how strongly a given structure is maintained under stress. From these observations, we propose that genome topology is robust to extension of the chromatin fiber and isotropic shape change, and that this elasticity may be beneficial in physiological circumstances of changes in nuclear size and volume.
Collapse
Affiliation(s)
- Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Yang Xu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Peyton H Terry
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Darrian G Nash
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
3
|
San Martin R, Das P, Dos Reis Marques R, Xu Y, Roberts JM, Sanders JT, Golloshi R, McCord RP. Chromosome compartmentalization alterations in prostate cancer cell lines model disease progression. J Cell Biol 2022; 221:212899. [PMID: 34889941 PMCID: PMC8669499 DOI: 10.1083/jcb.202104108] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/31/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022] Open
Abstract
Prostate cancer aggressiveness and metastatic potential are influenced by gene expression and genomic aberrations, features that can be influenced by the 3D structure of chromosomes inside the nucleus. Using chromosome conformation capture (Hi-C), we conducted a systematic genome architecture comparison on a cohort of cell lines that model prostate cancer progression, from normal epithelium to bone metastasis. We describe spatial compartment identity (A-open versus B-closed) changes with progression in these cell lines and their relation to gene expression changes in both cell lines and patient samples. In particular, 48 gene clusters switch from the B to the A compartment, including androgen receptor, WNT5A, and CDK14. These switches are accompanied by changes in the structure, size, and boundaries of topologically associating domains (TADs). Further, compartment changes in chromosome 21 are exacerbated with progression and may explain, in part, the genesis of the TMPRSS2-ERG translocation. These results suggest that discrete 3D genome structure changes play a deleterious role in prostate cancer progression. .
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Priyojit Das
- University of Tennessee - Oak Ridge National Lab (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Renata Dos Reis Marques
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Yang Xu
- University of Tennessee - Oak Ridge National Lab (UT-ORNL) Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN
| | - Justin M Roberts
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancer, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN
| |
Collapse
|
4
|
Valenzuela-Muñoz V, Gallardo-Escárate C, Benavente BP, Valenzuela-Miranda D, Núñez-Acuña G, Escobar-Sepulveda H, Váldes JA. Whole-Genome Transcript Expression Profiling Reveals Novel Insights into Transposon Genes and Non-Coding RNAs during Atlantic Salmon Seawater Adaptation. BIOLOGY 2021; 11:1. [PMID: 35052999 PMCID: PMC8772943 DOI: 10.3390/biology11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
The growing amount of genome information and transcriptomes data available allows for a better understanding of biological processes. However, analysis of complex transcriptomic experimental designs involving different conditions, tissues, or times is relevant. This study proposes a novel approach to analyze complex data sets combining transcriptomes and miRNAs at the chromosome-level genome. Atlantic salmon smolts were transferred to seawater under two strategies: (i) fish group exposed to gradual salinity changes (GSC) and (ii) fish group exposed to a salinity shock (SS). Gills, intestine, and head kidney samples were used for total RNA extraction, followed by mRNA and small RNA illumina sequencing. Different expression patterns among the tissues and treatments were observed through a whole-genome transcriptomic approach. Chromosome regions highly expressed between experimental conditions included a great abundance of transposable elements. In addition, differential expression analysis showed a greater number of transcripts modulated in response to SS in gills and head kidney. miRNA expression analysis suggested a small number of miRNAs involved in the smoltification process. However, target analysis of these miRNAs showed a regulatory role in growth, stress response, and immunity. This study is the first to evidence the interplaying among mRNAs and miRNAs and the structural relationship at the genome level during Atlantic salmon smoltification.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Bárbara P. Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Diego Valenzuela-Miranda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Gustavo Núñez-Acuña
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Hugo Escobar-Sepulveda
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, University of Concepción, Concepcion 4030000, Chile
| | - Juan Antonio Váldes
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepcion 4030000, Chile; (C.G.-E.); (B.P.B.); (D.V.-M.); (G.N.-A.); (H.E.-S.); (J.A.V.)
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370035, Chile
| |
Collapse
|
5
|
Chromosome Folding Promotes Intrachromosomal Aberrations under Radiation- and Nuclease-Induced DNA Breakage. Int J Mol Sci 2021; 22:ijms222212186. [PMID: 34830065 PMCID: PMC8618582 DOI: 10.3390/ijms222212186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022] Open
Abstract
The long-standing question in radiation and cancer biology is how principles of chromosome organization impact the formation of chromosomal aberrations (CAs). To address this issue, we developed a physical modeling approach and analyzed high-throughput genomic data from chromosome conformation capture (Hi-C) and translocation sequencing (HTGTS) methods. Combining modeling of chromosome structure and of chromosomal aberrations induced by ionizing radiation (IR) and nuclease we made predictions which quantitatively correlated with key experimental findings in mouse chromosomes: chromosome contact maps, high frequency of cis-translocation breakpoints far outside of the site of nuclease-induced DNA double-strand breaks (DSBs), the distinct shape of breakpoint distribution in chromosomes with different 3D organizations. These correlations support the heteropolymer globule principle of chromosome organization in G1-arrested pro-B mouse cells. The joint analysis of Hi-C, HTGTS and physical modeling data offers mechanistic insight into how chromosome structure heterogeneity, globular folding and lesion dynamics drive IR-recurrent CAs. The results provide the biophysical and computational basis for the analysis of chromosome aberration landscape under IR and nuclease-induced DSBs.
Collapse
|
6
|
Sajid A, Lalani EN, Chen B, Hashimoto T, Griffin DK, Bhartiya A, Thompson G, Robinson IK, Yusuf M. Ultra-Structural Imaging Provides 3D Organization of 46 Chromosomes of a Human Lymphocyte Prophase Nucleus. Int J Mol Sci 2021; 22:ijms22115987. [PMID: 34206020 PMCID: PMC8198510 DOI: 10.3390/ijms22115987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.
Collapse
Affiliation(s)
- Atiqa Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - Bo Chen
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China
| | - Teruo Hashimoto
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | | | - Archana Bhartiya
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
| | - George Thompson
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | - Ian K. Robinson
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mohammed Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Correspondence:
| |
Collapse
|
7
|
Hao X, Ye A, Yu S, Ni Q, Guo J, Wang X, Gao S, Lai Z, Zhao Y, Xuan Z. Case Report: Occupation Radiation Disease, Skin Injury, and Leukemia After Accidental Radiation Exposure. Front Public Health 2021; 9:657564. [PMID: 34055721 PMCID: PMC8149743 DOI: 10.3389/fpubh.2021.657564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: Follow-up observation of radiation accident in which a worker developed acute radiation disease and eventually died of leukemia. The case provided key practical information for the study on clinical effects of radiation on the health of workers. Case Presentation: We observed and followed-up the progression and effect of radiation exposure at various stages in a 28-year-old male patient. We examined the chromosomal morphology, white blood cell count, and sperm count. Laboratory tests for leukemia diagnosis and other clinical parameters were performed. Results: After the patient was irradiated, the white blood cell level decreased, the sperm count dropped to 0, and the libido completely disappeared. The patient's chromosome aberration cell rate and total chromosome aberration cell rate were 7.33 and 7.66%, respectively. Examination of leukemia diagnostic experiments revealed that abnormal cells accounted for 60%; bone marrow examination showed that prolymphocytes abnormally proliferated, accounting for 89%, and had positive extracellular iron staining. After the initial treatment, the patient's white blood cell level increased and was finally maintained at a normal level, the sperm count returned to normal levels, and libido was restored. The patient died of acute lymphoblastic leukemia 34 years after the exposure. Conclusion: More attention has been paid to the long-term effects of ionizing radiation-induced malignant tumors. The occupational protection of radiographic inspection workers should be strengthened to reduce and avoid occupational injuries to protect the health and safety of workers.
Collapse
Affiliation(s)
- Xiaoji Hao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Anfang Ye
- Department of Occupational Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shunfei Yu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qianying Ni
- Department of Occupational Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiadi Guo
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xiangguo Wang
- Department of Occupational Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenyong Gao
- Department of Occupational Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongjun Lai
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yaoxian Zhao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhiqiang Xuan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
8
|
Sanders JT, Freeman TF, Xu Y, Golloshi R, Stallard MA, Hill AM, San Martin R, Balajee AS, McCord RP. Radiation-induced DNA damage and repair effects on 3D genome organization. Nat Commun 2020; 11:6178. [PMID: 33268790 PMCID: PMC7710719 DOI: 10.1038/s41467-020-20047-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
The three-dimensional structure of chromosomes plays an important role in gene expression regulation and also influences the repair of radiation-induced DNA damage. Genomic aberrations that disrupt chromosome spatial domains can lead to diseases including cancer, but how the 3D genome structure responds to DNA damage is poorly understood. Here, we investigate the impact of DNA damage response and repair on 3D genome folding using Hi-C experiments on wild type cells and ataxia telangiectasia mutated (ATM) patient cells. We irradiate fibroblasts, lymphoblasts, and ATM-deficient fibroblasts with 5 Gy X-rays and perform Hi-C at 30 minutes, 24 hours, or 5 days after irradiation. We observe that 3D genome changes after irradiation are cell type-specific, with lymphoblastoid cells generally showing more contact changes than irradiated fibroblasts. However, all tested repair-proficient cell types exhibit an increased segregation of topologically associating domains (TADs). This TAD boundary strengthening after irradiation is not observed in ATM deficient fibroblasts and may indicate the presence of a mechanism to protect 3D genome structure integrity during DNA damage repair.
Collapse
Affiliation(s)
- Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Trevor F Freeman
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Yang Xu
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Mary A Stallard
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Ashtyn M Hill
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetics Biodosimetry Laboratory, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 309 Ken and Blaire Mossman Bldg 1311 Cumberland Ave, Knoxville, TN, 37996, USA. .,UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
9
|
Nath N, Hagenau L, Weiss S, Tzvetkova A, Jensen LR, Kaderali L, Port M, Scherthan H, Kuss AW. Genome-Wide DNA Alterations in X-Irradiated Human Gingiva Fibroblasts. Int J Mol Sci 2020; 21:E5778. [PMID: 32806598 PMCID: PMC7460866 DOI: 10.3390/ijms21165778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/04/2023] Open
Abstract
While ionizing radiation (IR) is a powerful tool in medical diagnostics, nuclear medicine, and radiology, it also is a serious threat to the integrity of genetic material. Mutagenic effects of IR to the human genome have long been the subject of research, yet still comparatively little is known about the genome-wide effects of IR exposure on the DNA-sequence level. In this study, we employed high throughput sequencing technologies to investigate IR-induced DNA alterations in human gingiva fibroblasts (HGF) that were acutely exposed to 0.5, 2, and 10 Gy of 240 kV X-radiation followed by repair times of 16 h or 7 days before whole-genome sequencing (WGS). Our analysis of the obtained WGS datasets revealed patterns of IR-induced variant (SNV and InDel) accumulation across the genome, within chromosomes as well as around the borders of topologically associating domains (TADs). Chromosome 19 consistently accumulated the highest SNVs and InDels events. Translocations showed variable patterns but with recurrent chromosomes of origin (e.g., Chr7 and Chr16). IR-induced InDels showed a relative increase in number relative to SNVs and a characteristic signature with respect to the frequency of triplet deletions in areas without repetitive or microhomology features. Overall experimental conditions and datasets the majority of SNVs per genome had no or little predicted functional impact with a maximum of 62, showing damaging potential. A dose-dependent effect of IR was surprisingly not apparent. We also observed a significant reduction in transition/transversion (Ti/Tv) ratios for IR-dependent SNVs, which could point to a contribution of the mismatch repair (MMR) system that strongly favors the repair of transitions over transversions, to the IR-induced DNA-damage response in human cells. Taken together, our results show the presence of distinguishable characteristic patterns of IR-induced DNA-alterations on a genome-wide level and implicate DNA-repair mechanisms in the formation of these signatures.
Collapse
Affiliation(s)
- Neetika Nath
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Lisa Hagenau
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
| | - Stefan Weiss
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
| | - Ana Tzvetkova
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Lars R. Jensen
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Matthias Port
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, 80937 München, Germany; (M.P.); (H.S.)
| | - Harry Scherthan
- Bundeswehr Institute for Radiobiology Affiliated to the University of Ulm, 80937 München, Germany; (M.P.); (H.S.)
| | - Andreas W. Kuss
- Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; (N.N.); (L.H.); (S.W.); (A.T.); (L.R.J.)
| |
Collapse
|
10
|
Lindsay RJ, Pham B, Shen T, McCord RP. Characterizing the 3D structure and dynamics of chromosomes and proteins in a common contact matrix framework. Nucleic Acids Res 2019; 46:8143-8152. [PMID: 29992238 PMCID: PMC6144818 DOI: 10.1093/nar/gky604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Conformational ensembles of biopolymers, whether proteins or chromosomes, can be described using contact matrices. Principal component analysis (PCA) on the contact data has been used to interrogate both protein and chromosome structures and/or dynamics. However, as these fields have developed separately, variants of PCA have emerged. Previously, a variant we hereby term Implicit-PCA (I-PCA) has been applied to chromosome contact matrices and revealed the spatial segregation of active and inactive chromatin. Separately, Explicit-PCA (E-PCA) has previously been applied to proteins and characterized their correlated structure fluctuations. Here, we swapped analysis methods (I-PCA and E-PCA), applying each to a different biopolymer type (chromosome or protein) than the one for which they were initially developed. We find that applying E-PCA to chromosome distance matrices derived from microscopy data can reveal the dominant motion (concerted fluctuation) of these chromosomes. Further, by applying E-PCA to Hi-C data across the human blood cell lineage, we isolated the aspects of chromosome structure that most strongly differentiate cell types. Conversely, when we applied I-PCA to simulation snapshots of proteins, the major component reported the consensus features of the structure, making this a promising approach for future analysis of semi-structured proteins.
Collapse
Affiliation(s)
- Richard J Lindsay
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Bill Pham
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Tongye Shen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Balajee AS, Hande MP. History and evolution of cytogenetic techniques: Current and future applications in basic and clinical research. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:3-12. [PMID: 30389159 DOI: 10.1016/j.mrgentox.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Chromosomes are the vehicles of genes, which are the functional units of a cell's nucleus. In humans, there are more than 20,000 genes that are distributed among 46 chromosomes in somatic cells. The study of chromosome structure and function is known as cytogenetics which is historically a field of hybrid science encompassing cytology and genetics. The field of cytogenetics has undergone rapid developments over the last several decades from classical Giemsa staining of chromosomes to 3-dimensional spatial organization of chromosomes with a high resolution mapping of gene structure at the nucleotide level. Improved molecular cytogenetic techniques have opened up exciting possibilities for understanding the chromosomal/molecular basis of various human diseases including cancer and tissue degeneration. This review summaries the history and evolution of various cytogenetic techniques and their current and future applications in diverse areas of basic research and medical diagnostics.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetics Biodosimetry Laboratory, Radiation Emergency Assistance Center and Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, 1299, Bethel Valley Road, Oak Ridge, TN 37830, USA.
| | - M Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, 117593, Singapore.
| |
Collapse
|