1
|
Romeo S, Sannino A, Rosaria Scarfì M, Lagorio S, Zeni O. Genotoxicity of radiofrequency electromagnetic fields on mammalian cells in vitro: A systematic review with narrative synthesis. ENVIRONMENT INTERNATIONAL 2024; 193:109104. [PMID: 39476595 DOI: 10.1016/j.envint.2024.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Over the last decades, great concern has been raised about possible adverse effects to human health due to exposures to radiofrequency electromagnetic fields (RF-EMF, 100 kHz - 300 GHz) emitted by wireless communication technologies. In 2011 the International Agency for Research on Cancer classified RF-EMF as possibly carcinogenic to humans, highlighting that the evidence was weak and far from conclusive. Updated systematic reviews of the scientific literature on this topic are lacking, especially for mechanistic studies. OBJECTIVES To perform a systematic review of the scientific literature on genotoxic effects induced by RF-EMF in in vitro experimental models. The overall aim is to assess the confidence and level of evidence of the induced effects in mammalian cell cultures. METHODS Full details regarding the eligibility criteria, information sources, and methods developed to assess risk of bias in the included study, are reported in our published protocol (Romeo et al. 2021). The databases NCBI PubMed, Web of Science, and EMF-Portal were used as information sources (last searched on 31st December 2022). In developing the systematic review, we followed the guidelines provided by the National Toxicology Program-Office of Health Assessment and Translation (NTP-OHAT), adapted to the evaluation of in vitro studies. A narrative synthesis of the body of evidence was performed by tabulating data classified according to meaningful groups (endpoints) and sub-groups (exposure parameters). This report, abstract included, conforms to the PRISMA 2020 (Preferred Reporting Items for Systematic reviews and Meta-Analyses) guidelines. RESULTS Out of 7750 unique records identified, 159 articles were eligible for inclusion. From the extracted data, we identified 1111 experiments (defined as independent specific combinations of diverse biological and electromagnetic parameters). The large majority (80%) of experiments reviewed did not show statistically significant genotoxic effects of RF-EMF exposures, and most "positive" studies were rated as of moderate to low quality, with negative ratings in the key bias domains. A qualitative evidence appraisal was conducted at the endpoint level, and then integrated across endpoints. DISCUSSION To the best of our knowledge, this is the first systematic review of the scientific literature on genotoxic effects in mammalian cell cultures in relation to RF-EMF exposure, which confirms and strengthens conclusions from previous syntheses of this specific topic thanks to the use of transparently reported methods, pre-defined inclusion criteria, and formal assessment of susceptibility to bias. Limitations of the evidence included the frequent reporting of findings in graphical display only, and the large heterogeneity of experimental data, which precluded a meta-analysis. CONCLUSIONS In the assessment restricted to studies reporting a significant effect of the exposure on the outcome, we reached an overall assessment of "low" confidence in the evidence that RF-EMF induce genotoxic effects in mammalian cells. However, 80% of experiments reviewed showed no effect of RF exposure on the large majority of endpoints, especially the irreversible ones, independently of the exposure features, level, and duration (moderate evidence of no effect). Therefore, we conclude that the analysis of the papers included in this review, although only qualitative, suggests that RF exposure does not increase the occurrence of genotoxic effects in vitro. FRAMEWORK AND FUNDING This systematic review addresses one of the evidence streams considered in a larger systematic review of the scientific literature on the potential carcinogenicity of RF-EMF, performed by scientists from several Italian public research agencies. The project is supported by the Italian Workers' Compensation Authority (INAIL) in the framework of the CRA with the Istituto Superiore di Sanità "BRiC 2018/06 - Scientific evidence on the carcinogenicity of electromagnetic fields".
Collapse
Affiliation(s)
- Stefania Romeo
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Anna Sannino
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Maria Rosaria Scarfì
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| | - Susanna Lagorio
- Department of Oncology and Molecular Medicine, National Institute of Health, 00161 Roma, Italy.
| | - Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA), Italian National Research Council (CNR), 80124, Napoli, Italy.
| |
Collapse
|
2
|
Szilágyi Z, Pintér B, Szabó E, Kubinyi G, Le Drean Y, Thuróczy G. Investigation of genotoxicity induced by intermediate frequency magnetic field combined with ionizing radiation: In vitro study on human fibroblast cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 899:503817. [PMID: 39326937 DOI: 10.1016/j.mrgentox.2024.503817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024]
Abstract
These days, exposure to electromagnetic fields has become omnipresent in modern society. Not only the extremely-low frequency and radiofrequency, but also intermediate frequency (IF) magnetic field (MF) might be absorbed in the human body resulting in an ever-growing concern about their possible health effects. Devices, such as induction cooktops, chargers, compact fluorescent lamps, touchscreens and electric vehicles emit a wide range of intermediate frequency fields. We investigated the effects of 22 kHz or 250 kHz intermediate frequency magnetic field exposure on the human skin cells. We also examined the adaptive response phenomenon; whether IF MF exposure could possibly reduce the harmful genotoxic effects of ionizing radiation. To get answers to these questions, in vitro studies were carried out on fibroblast cells to investigate the effects on oxidative stress, DNA damage and micronucleus formation. We found a decreased micronucleus formation due to the 22 kHz IF MF exposure and significantly increased oxidative stress in fibroblast cells, which were exposed only to 250 kHz IF MF. We were unable to detect the protective or co-genotoxic effects of intermediate frequency magnetic field exposure combined with ionizing radiation, thus we found no evidence for the adaptive response phenomena.
Collapse
Affiliation(s)
- Zsófia Szilágyi
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary.
| | - Bertalan Pintér
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Erika Szabó
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Györgyi Kubinyi
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| | - Yves Le Drean
- Research Institute for Environmental and Occupational Health, University of Rennes I, 2 Rue du Thabor, Rennes 35000, France
| | - György Thuróczy
- Non-ionizing Unit, Department of Radiobiology and Radiohygiene, National Public Health Center, Anna Street 5., Budapest 1221, Hungary
| |
Collapse
|
3
|
Massaro L, De Sanctis S, Franchini V, Regalbuto E, Alfano G, Focaccetti C, Benvenuto M, Cifaldi L, Sgura A, Berardinelli F, Marinaccio J, Barbato F, Rossi E, Nardozi D, Masuelli L, Bei R, Lista F. Study of genotoxic and cytotoxic effects induced in human fibroblasts by exposure to pulsed and continuous 1.6 GHz radiofrequency. Front Public Health 2024; 12:1419525. [PMID: 39145180 PMCID: PMC11323689 DOI: 10.3389/fpubh.2024.1419525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Background The widespread use of radiofrequency (RF) sources, ranging from household appliances to telecommunications devices and military equipment, raises concerns among people and regulatory agencies about the potential health risks of RF exposure. Consequently, several in vitro and in vivo studies have been done to investigate the biological effects, in particular non-thermal, of this non-ionizing radiation. To date, this issue is still being debated due to the controversial results that have been reported. Furthermore, the impact of different RF signal modulations on biological systems remains poorly investigated. The present in vitro study aims to evaluate the cytotoxicity and genotoxicity of continuous or pulsed 1.6 GHz RF in human dermal fibroblasts (HDF). Methods HDF cultures were exposed to continuous and pulsed 1.6 GHz RF, for 2 h, with Specific Absorption Rate (SAR) of 0.4 W/kg. The potential biological effects of 1.6 GHz RF on HDF were assessed with a multi-methodological approach, analyzing the effects on cell cycle, ultrastructure, protein expression, mitotic spindle, CREST stained micronuclei, chromosome segregation and γ-H2AX/53BP1 foci. Results 1.6 GHz RF exposure modified proteins expression and morphology of HDF. Specifically, the expression of different heat-shock proteins (HSP) (i.e., HSP-90, HSP-60, and HSP-25) and phospho-AKT were affected. In addition, both continuous and pulsed RF modified the cytoskeletal organization in HDF and increased the number of lysosomes, while the formation of autophagosomes was observed only after pulsed RF exposure. Mitotic spindle anomalies were also found after exposure. However, no significant effect was observed on cell cycle, chromosome segregation, CREST-stained micronuclei and γ-H2AX/53BP1 foci. Conclusion The results of the present study show the absence of genotoxic damage in 1.6 GHz RF exposed HDF and, although mitotic spindle alterations were observed, they did not have an aneugenic effect. On the other hand, changes in some proteins expression and cell ultrastructure in exposed HDF suggest that RF can potentially induce cell alterations at the morphological and molecular levels.
Collapse
Affiliation(s)
- Luca Massaro
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefania De Sanctis
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Valeria Franchini
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Elisa Regalbuto
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Gaetano Alfano
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | | | | | - Federica Barbato
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Erica Rossi
- Department of Science, University of Rome “Roma Tre”, Rome, Italy
| | - Daniela Nardozi
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Florigio Lista
- Radiobiology Section, Defence Center for Biotechnologies, Defence Institute for Biomedical Sciences, Rome, Italy
| |
Collapse
|
4
|
Briones-Márquez LF, Navarro-Partida J, Herrera-González A, García-Bon MA, Martínez-Álvarez IA, Uribe-Rodríguez D, González-Ortiz LJ, López-Naranjo EJ. HPLC-UV evaluation of a microwave assisted method as an active drug loading technique for exosome-based drug delivery system. Heliyon 2023; 9:e20742. [PMID: 37842624 PMCID: PMC10570584 DOI: 10.1016/j.heliyon.2023.e20742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
This paper evaluates the potential of a microwave radiation (MR) assisted method as an active drug loading technique for exosomes using polyphenolic nutraceuticals as model drugs (i.e. resveratrol (RV), rosmarinic acid (RA), pterostilbene (PT) and epigallocatechin gallate (EG)). MR is evaluated as a single step method and as part of a two-step method consisting of incubation (IN) followed by MR. The effect of exposure time, loading method and type of nutraceutical on the loading efficiency were investigated using high performance liquid chromatography (HPLC), X-ray diffraction (XRD) and flow cytometry. Additionally, dynamic light scattering (DLS) was used to determine the size of exosomes. Loading efficiency results indicated that MR is a promising method to be used as loading process. Results also suggested that due to different levels of hydrophobicity, related to the number of OH groups, the absorption of polyphenols into the bilayer of EVs is different for each molecule. According to XRD results, MR could not be used with any cargo drug since radiation could affect the chemical composition and the degree of crystallinity of such molecules, consequently affecting their performance. Flow cytometry results indicated that loading methods negatively affect exosome concentration.
Collapse
Affiliation(s)
| | - José Navarro-Partida
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, 64849, Mexico
| | | | - Miguel A. García-Bon
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, 64849, Mexico
| | | | | | | | | |
Collapse
|
5
|
Dagli N, Dagli R, Thangavelu L. Interaction of millimetre waves used in 5g network with cells and tissues of head-and-neck region: A literature review. ADVANCES IN HUMAN BIOLOGY 2023. [DOI: 10.4103/aihb.aihb_133_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
6
|
Sitnikov DS, Revkova VA, Ilina IV, Gurova SA, Komarov PS, Struleva EV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Studying the genotoxic effects of high intensity terahertz radiation on fibroblasts and CNS tumor cells. JOURNAL OF BIOPHOTONICS 2023; 16:e202200212. [PMID: 36250985 DOI: 10.1002/jbio.202200212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The data is obtained on the effect of high-intensity pulses of terahertz (THz) radiation with a broad spectrum (0.2-3 THz) on cell cultures. We have evaluated the threshold exposure parameters of THz radiation causing genotoxic effects in fibroblasts. Phosphorylation of histone H2AX at Ser 139 (γH2AX) was chosen as a marker for genotoxicity and a quantitative estimation of γH2AX foci number in fibroblasts was performed after cell irradiation with THz pulses for 30 min. No genotoxic effects of THz radiation were observed in fibroblasts unless peak intensity and electric field strength exceeded 21 GW cm-2 and 2.8 MV cm-1 , respectively. In tumor cell lines (neuroblastoma (SK-N-BE (2)) and glioblastoma (U87)), exposure to THz pulses with peak intensity of 21 GW cm-2 for 30 min caused no morphological changes as well as no statistically significant increase in histone phosphorylation foci number.
Collapse
Affiliation(s)
- Dmitry S Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Inna V Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Gurova
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Obninsk, Russia
| | - Pavel S Komarov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Evgenia V Struleva
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int J Mol Sci 2022; 23:ijms23169288. [PMID: 36012552 PMCID: PMC9409438 DOI: 10.3390/ijms23169288] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/12/2022] Open
Abstract
Modern humanity wades daily through various radiations, resulting in frequent exposure and causing potentially important biological effects. Among them, the brain is the organ most sensitive to electromagnetic radiation (EMR) exposure. Despite numerous correlated studies, critical unknowns surround the different parameters used, including operational frequency, power density (i.e., energy dose), and irradiation time that could permit reproducibility and comparability between analyses. Furthermore, the interactions of EMR with biological systems and its precise mechanisms remain poorly characterized. In this review, recent approaches examining the effects of microwave radiations on the brain, specifically learning and memory capabilities, as well as the mechanisms of brain dysfunction with exposure as reported in the literature, are analyzed and interpreted to provide prospective views for future research directed at this important and novel medical technology for developing preventive and therapeutic strategies on brain degeneration caused by microwave radiation. Additionally, the interactions of microwaves with biological systems and possible mechanisms are presented in this review. Treatment with natural products and safe techniques to reduce harm to organs have become essential components of daily life, and some promising techniques to treat cancers and their radioprotective effects are summarized as well. This review can serve as a platform for researchers to understand the mechanism and interactions of microwave radiation with biological systems, the present scenario, and prospects for future studies on the effect of microwaves on the brain.
Collapse
|
8
|
Is the Technology Era Aging You? A Review of the Physiologic and Psychologic Toll of Technology Use. Dermatol Surg 2022; 48:978-988. [PMID: 35862680 DOI: 10.1097/dss.0000000000003535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Technology use is at an all-time high and its potential impact on psychological and physiologic health should be explored. OBJECTIVE The objective of this narrative review was to identify the role of technology use on health and well-being. MATERIALS AND METHODS Authors performed a review of PubMed and publications of the World Health Organization, Department of Defense, and Centers for Disease Control and Prevention to determine the impact of technology regarding electromagnetic radiation (EM), posture and mobility, sleep disturbance, and psychological stress and well-being. RESULTS Studies on the impact of EM were conflicting, with about 45% reporting negative consequences and 55% reporting no effect. Radiofrequency EM (RF-EM) may more significantly affect fibroblasts and immature cells. Device use was implicated in worsening cognitive focus, imbalance, and sleep. Social media use affects self-esteem and mental health and is associated with up to 33% presence of addiction. Effects seem to be dose related and more pronounced in younger ages. CONCLUSION Technology use significantly affects sleep, mental health, and cognitive function. Seeking psychological help, limiting social media use, and reducing use before sleep may partially mitigate these effects. The impact of EM is undetermined, but the WHO lists RF-EM as a potential carcinogen.
Collapse
|
9
|
Karipidis K, Mate R, Urban D, Tinker R, Wood A. 5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:585-605. [PMID: 33727687 PMCID: PMC8263336 DOI: 10.1038/s41370-021-00297-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 05/27/2023]
Abstract
The increased use of radiofrequency (RF) fields above 6 GHz, particularly for the 5 G mobile phone network, has given rise to public concern about any possible adverse effects to human health. Public exposure to RF fields from 5 G and other sources is below the human exposure limits specified by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). This state-of-the science review examined the research into the biological and health effects of RF fields above 6 GHz at exposure levels below the ICNIRP occupational limits. The review included 107 experimental studies that investigated various bioeffects including genotoxicity, cell proliferation, gene expression, cell signalling, membrane function and other effects. Reported bioeffects were generally not independently replicated and the majority of the studies employed low quality methods of exposure assessment and control. Effects due to heating from high RF energy deposition cannot be excluded from many of the results. The review also included 31 epidemiological studies that investigated exposure to radar, which uses RF fields above 6 GHz similar to 5 G. The epidemiological studies showed little evidence of health effects including cancer at different sites, effects on reproduction and other diseases. This review showed no confirmed evidence that low-level RF fields above 6 GHz such as those used by the 5 G network are hazardous to human health. Future experimental studies should improve the experimental design with particular attention to dosimetry and temperature control. Future epidemiological studies should continue to monitor long-term health effects in the population related to wireless telecommunications.
Collapse
Affiliation(s)
- Ken Karipidis
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia.
| | - Rohan Mate
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - David Urban
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - Rick Tinker
- Australian Radiation Protection and Nuclear Safety Agency, Melbourne, VIC, Australia
| | - Andrew Wood
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Regalbuto E, Anselmo A, De Sanctis S, Franchini V, Lista F, Benvenuto M, Bei R, Masuelli L, D’Inzeo G, Paffi A, Trodella E, Sgura A. Human Fibroblasts In Vitro Exposed to 2.45 GHz Continuous and Pulsed Wave Signals: Evaluation of Biological Effects with a Multimethodological Approach. Int J Mol Sci 2020; 21:E7069. [PMID: 32992895 PMCID: PMC7584027 DOI: 10.3390/ijms21197069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing exposure to radiofrequency electromagnetic fields (RF-EMF), especially from wireless communication devices, raises questions about their possible adverse health effects. So far, several in vitro studies evaluating RF-EMF genotoxic and cytotoxic non-thermal effects have reported contradictory results that could be mainly due to inadequate experimental design and lack of well-characterized exposure systems and conditions. Moreover, a topic poorly investigated is related to signal modulation induced by electromagnetic fields. The aim of this study was to perform an analysis of the potential non-thermal biological effects induced by 2.45 GHz exposures through a characterized exposure system and a multimethodological approach. Human fibroblasts were exposed to continuous (CW) and pulsed (PW) signals for 2 h in a wire patch cell-based exposure system at the specific absorption rate (SAR) of 0.7 W/kg. The evaluation of the potential biological effects was carried out through a multimethodological approach, including classical biological markers (genotoxic, cell cycle, and ultrastructural) and the evaluation of gene expression profile through the powerful high-throughput next generation sequencing (NGS) RNA sequencing (RNA-seq) approach. Our results suggest that 2.45 GHz radiofrequency fields did not induce significant biological effects at a cellular or molecular level for the evaluated exposure parameters and conditions.
Collapse
Affiliation(s)
- Elisa Regalbuto
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| | - Anna Anselmo
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Stefania De Sanctis
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Valeria Franchini
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Florigio Lista
- Scientific Department, Army Medical Center of Rome, 00184 Rome, Italy; (A.A.); (S.D.S.); (V.F.); (F.L.)
| | - Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, 00161 Rome, Italy;
| | - Guglielmo D’Inzeo
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Alessandra Paffi
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Eugenio Trodella
- Department of Information Engineering, Electronics and Telecommunications (DIET), University of Rome “La Sapienza”, 00184 Rome, Italy; (G.D.); (A.P.); (E.T.)
| | - Antonella Sgura
- Department of Science, University of Rome “Roma Tre”, 00146 Rome, Italy
| |
Collapse
|
11
|
Simkó M, Mattsson MO. 5G Wireless Communication and Health Effects-A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3406. [PMID: 31540320 PMCID: PMC6765906 DOI: 10.3390/ijerph16183406] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
The introduction of the fifth generation (5G) of wireless communication will increase the number of high-frequency-powered base stations and other devices. The question is if such higher frequencies (in this review, 6-100 GHz, millimeter waves, MMW) can have a health impact. This review analyzed 94 relevant publications performing in vivo or in vitro investigations. Each study was characterized for: study type (in vivo, in vitro), biological material (species, cell type, etc.), biological endpoint, exposure (frequency, exposure duration, power density), results, and certain quality criteria. Eighty percent of the in vivo studies showed responses to exposure, while 58% of the in vitro studies demonstrated effects. The responses affected all biological endpoints studied. There was no consistent relationship between power density, exposure duration, or frequency, and exposure effects. The available studies do not provide adequate and sufficient information for a meaningful safety assessment, or for the question about non-thermal effects. There is a need for research regarding local heat developments on small surfaces, e.g., skin or the eye, and on any environmental impact. Our quality analysis shows that for future studies to be useful for safety assessment, design and implementation need to be significantly improved.
Collapse
Affiliation(s)
- Myrtill Simkó
- SciProof International AB, Vaktpoststigen 4, 83132 Östersund, Sweden.
| | | |
Collapse
|