1
|
Li S, Wang H, Xiong S, Liu J, Sun S. Targeted Delivery Strategies for Multiple Myeloma and Their Adverse Drug Reactions. Pharmaceuticals (Basel) 2024; 17:832. [PMID: 39065683 PMCID: PMC11279695 DOI: 10.3390/ph17070832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, multiple myeloma (MM) is a prevalent hematopoietic system malignancy, known for its insidious onset and unfavorable prognosis. Recently developed chemotherapy drugs for MM have exhibited promising therapeutic outcomes. Nevertheless, to overcome the shortcomings of traditional clinical drug treatment, such as off-target effects, multiple drug resistance, and systemic toxicity, targeted drug delivery systems are optimizing the conventional pharmaceuticals for precise delivery to designated sites at controlled rates, striving for maximal efficacy and safety, presenting a promising approach for MM treatment. This review will delve into the outstanding performance of antibody-drug conjugates, peptide-drug conjugates, aptamer-drug conjugates, and nanocarrier drug delivery systems in preclinical studies or clinical trials for MM and monitor their adverse reactions during treatment.
Collapse
Affiliation(s)
- Shuting Li
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
| | - Hongjie Wang
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
| | - Shijun Xiong
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Jing Liu
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| | - Shuming Sun
- Xiangya School of Medicine, Central South University, Changsha 410011, China; (S.L.); (H.W.); (S.X.); (J.L.)
- Department of Biochemistry and Molecular Biology, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
2
|
Gostaviceanu A, Gavrilaş S, Copolovici L, Copolovici DM. Membrane-Active Peptides and Their Potential Biomedical Application. Pharmaceutics 2023; 15:2091. [PMID: 37631305 PMCID: PMC10459175 DOI: 10.3390/pharmaceutics15082091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Membrane-active peptides (MAPs) possess unique properties that make them valuable tools for studying membrane structure and function and promising candidates for therapeutic applications. This review paper provides an overview of the fundamental aspects of MAPs, focusing on their membrane interaction mechanisms and potential applications. MAPs exhibit various structural features, including amphipathic structures and specific amino acid residues, enabling selective interaction with multiple membranes. Their mechanisms of action involve disrupting lipid bilayers through different pathways, depending on peptide properties and membrane composition. The therapeutic potential of MAPs is significant. They have demonstrated antimicrobial activity against bacteria and fungi, making them promising alternatives to conventional antibiotics. MAPs can selectively target cancer cells and induce apoptosis, opening new avenues in cancer therapeutics. Additionally, MAPs serve as drug delivery vectors, facilitating the transport of therapeutic cargoes across cell membranes. They represent a fascinating class of biomolecules with significant potential in basic research and clinical applications. Understanding their mechanisms of action and designing peptides with enhanced selectivity and efficacy will further expand their utility in diverse fields. Exploring MAPs holds promise for developing novel therapeutic strategies against infections, cancer, and drug delivery challenges.
Collapse
Affiliation(s)
- Andreea Gostaviceanu
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
- Biomedical Sciences Doctoral School, University of Oradea, University St., No. 1, 410087 Oradea, Romania
| | - Simona Gavrilaş
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, and Institute for Research, Development and Innovation in Technical and Natural Sciences, Aurel Vlaicu University, Elena Drăgoi St., No. 2, 310330 Arad, Romania; (A.G.); (S.G.); (L.C.)
| |
Collapse
|
3
|
Comprehensive Analysis of Transcriptomic Profiles Identified the Prediction of Prognosis and Drug Sensitivity of Aminopeptidase-Like 1 (NPEPL1) for Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2023; 2023:4732242. [PMID: 36816355 PMCID: PMC9931475 DOI: 10.1155/2023/4732242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 02/10/2023]
Abstract
Aminopeptidase-like 1 (NPEPL1) is a member of the aminopeptidase group that plays a role in the development and progression of various diseases. Expression of NPEPL1 has been reported to be involved in prostate, breast, and colorectal cancers. However, the role and mechanism of NPEPL1 in clear cell renal cell carcinoma (ccRCC) are unclear. The Cancer Genome Atlas (TCGA) and Human Protein Atlas (HPA) databases were used to predict the relationship between clinicopathological features and NPEPL1 expression. Changes in immune status and drug sensitivity with NPEPL1 expression were analyzed by the "CIBERSORT" function in R software. The results found that NPEPL1 expression was upregulated in ccRCC tissues, with expression progressively increasing with ccRCC stage and grade. Patients with high NPEPL1 expression presented with a poor prognosis across different clinicopathological features. Univariate and multivariate Cox regression analyses indicated that aberrant NPEPL1 expression was an independent risk factor for ccRCC. The nomogram showed that NPEPL1 expression improved the accuracy of predicting the prognosis of ccRCC patients. The Gene Ontology (GO) term enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that NPEPL1 may be involved in the development of ccRCC through the voltage-gated calcium channel complex, channel activity, cAMP signaling pathway, and oxytocin signaling pathway. The coexpression analysis found that NPEPL1 altered tumor characteristics by interacting with related genes. The "CIBERSORT" analysis showed that elevated NPEPL1 expression was followed by an enrichment of regulatory T cells and follicular helper T cells in the microenvironment. The drug sensitivity analysis found patients with high NPEPL1 expression had a higher benefit from axitinib, cisplatin, and GSK429286A. In conclusion, upregulation of NPEPL1 expression was involved in ccRCC prognosis and treatment. NPEPL1 could be used as a therapeutic target to guide clinical dosing.
Collapse
|
4
|
Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 2023; 13:498-516. [PMID: 36873165 PMCID: PMC9978859 DOI: 10.1016/j.apsb.2022.07.020] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|