1
|
Kang H, Huang Y, Peng H, Zhang X, Liu Y, Liu Y, Xia Y, Liu S, Wu Y, Wang S, Lei T, Zhang H. Mesenchymal Stem Cell-Loaded Hydrogel Improves Surgical Treatment for Chronic Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01274-5. [PMID: 38977638 DOI: 10.1007/s12975-024-01274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Chronic cerebral ischemia (CCI) results in a prolonged insufficient blood supply to the brain tissue, leading to impaired neuronal function and subsequent impairment of cognitive and motor abilities. Our previous research showed that in mice with bilateral carotid artery stenosis, the collateral neovascularization post Encephalo-myo-synangiosis (EMS) treatment could be facilitated by bone marrow mesenchymal stem cells (MSCs) transplantation. Considering the advantages of biomaterials, we synthesized and modified a gelatin hydrogel for MSCs encapsulation. We then applied this hydrogel on the brain surface during EMS operation in rats with CCI, and evaluated its impact on cognitive performance and collateral circulation. Consequently, MSCs encapsulated in hydrogel significantly augment the therapeutic effects of EMS, potentially by promoting neovascularization, facilitating neuronal differentiation, and suppressing neuroinflammation. Furthermore, taking advantage of multi-RNA-sequencing and in silico analysis, we revealed that MSCs loaded in hydrogel regulate PDCD4 and CASP2 through the overexpression of miR-183-5p and miR-96-5p, thereby downregulating the expression of apoptosis-related proteins and inhibiting early apoptosis. In conclusion, a gelatin hydrogel to enhance the functionality of MSCs has been developed, and its combination with EMS treatment can improve the therapeutic effect in rats with CCI, suggesting its potential clinical benefit.
Collapse
Affiliation(s)
- Huayu Kang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huan Peng
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Xia
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yaqi Wu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Théron A, Maumus M, Biron-Andreani C, Sirvent N, Jorgensen C, Noël D. What is the rationale for mesenchymal stromal cells based therapies in the management of hemophilic arthropathies? Osteoarthritis Cartilage 2024; 32:634-642. [PMID: 38160743 DOI: 10.1016/j.joca.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Hemophilia A and B are rare X-linked genetic bleeding disorders due to a complete or partial deficiency in the coagulation factors VIII or IX, respectively. The main treatment for hemophilia is prophylactic and based on coagulation factor replacement therapies. These treatments have significantly reduced bleeding and improved the patients' quality of life. Nevertheless, repeated joint bleedings (hemarthroses), even subclinical hemarthroses, can lead to hemophilic arthropathy (HA). This disabling condition is characterized by chronic pain due to synovial inflammation, cartilage and bone destruction requiring ultimately joint replacement. HA resembles to rheumatoid arthritis because of synovitis but HA is considered as having similarities with osteoarthritis as illustrated by the migration of immune cells, production of inflammatory cytokines, synovial hypertrophy and cartilage damage. Various drugs have been evaluated for the management of HA with limited success. The objective of the review is to discuss new therapeutic approaches with a special focus on the studies that have investigated the potential of using mesenchymal stromal cells (MSCs) in the management of HA. A systematic review of the literature has been made. Most of the studies have focused on the interest of MSCs for the delivery of missing factors VIII or IX but in some studies, more insight on the effect of MSC injection on synovial inflammation or cartilage structure were provided and put in perspective for possible clinical applications.
Collapse
Affiliation(s)
- Alexandre Théron
- IRMB, University of Montpellier, INSERM, Montpellier, France; Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France; Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Christine Biron-Andreani
- Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France
| | - Nicolas Sirvent
- Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|