1
|
Dutta RR, Abdolmanafi S, Rabizadeh A, Baghbaninogourani R, Mansooridara S, Lopez A, Akbari Y, Paff M. Neuromodulation and Disorders of Consciousness: Systematic Review and Pathophysiology. Neuromodulation 2024:S1094-7159(24)00708-6. [PMID: 39425733 DOI: 10.1016/j.neurom.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Disorders of consciousness (DoC) represent a range of clinical states, affect hundreds of thousands of people in the United States, and have relatively poor outcomes. With few effective pharmacotherapies, neuromodulation has been investigated as an alternative for treating DoC. To summarize the available evidence, a systematic review of studies using various forms of neuromodulation to treat DoC was conducted. MATERIALS AND METHODS Adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic literature review, the PubMed, Scopus, and Web of Science databases were queried to identify articles published between 1990 and 2023 in which neuromodulation was used, usually in conjunction with pharmacologic intervention, to treat or reverse DoC in humans and animals. Records were excluded if DoC (eg, unresponsive wakefulness syndrome, minimally conscious state, etc) were not the primary clinical target. RESULTS A total of 69 studies (58 human, 11 animal) met the inclusion criteria for the systematic review, resulting in over 1000 patients and 150 animals studied in total. Most human studies investigated deep brain stimulation (n = 15), usually of the central thalamus, and transcranial magnetic stimulation (n = 18). Transcranial direct-current stimulation (n = 15) and spinal cord stimulation (n = 6) of the dorsal column also were represented. A few studies investigated low-intensity focused ultrasound (n = 2) and median nerve stimulation (n = 2). Animal studies included primate and murine models, with nine studies involving deep brain stimulation, one using ultrasound, and one using transcranial magnetic stimulation. DISCUSSION While clinical outcomes were mixed and possibly confounded by natural recovery or pharmacologic interventions, deep brain stimulation appeared to facilitate greater improvements in DoC than other modalities. However, repetitive transcranial magnetic stimulation also demonstrated clinical potential with much lower invasiveness.
Collapse
Affiliation(s)
- Rajeev R Dutta
- School of Medicine, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | - Alexander Lopez
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California Irvine, Orange, CA, USA; Department of Neurological Surgery, University of California Irvine, Orange, CA, USA; Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA; Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA, USA
| | - Michelle Paff
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| |
Collapse
|
2
|
Ripley D, Krese K, Rosenow JM, Patil V, Schuele S, Pacheco MS, Roth E, Kletzel S, Livengood S, Aaronson A, Herrold A, Blabas B, Bhaumik R, Guernon A, Burress Kestner C, Walsh E, Bhaumik D, Bender Pape TL. Seizure Risk Associated With the Use of Transcranial Magnetic Stimulation for Coma Recovery in Individuals With Disordered Consciousness After Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024:00001199-990000000-00199. [PMID: 39293071 DOI: 10.1097/htr.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Repetitive Transcranial Magnetic Stimulation (rTMS) is emerging as a promising treatment for persons with disorder of consciousness (DoC) following traumatic brain injury (TBI). Clinically, however, there are concerns about rTMS exacerbating baseline seizure risk. To advance understanding of risks, this article reports evidence of DoC-TBI rTMS-related seizure risk. SETTING Acute and sub-acute hospitals. PARTICIPANTS Persons in states of DoC 6.5 months to 15 years after TBI (n = 20) who received active rTMS (n = 17) or placebo rTMS (n = 3). After completing placebo procedures, placebo participants completed active rTMS procedures. These 3 participants are included in the active group. DESIGN Meta-analysis of data from 3 clinical trials; 2 within-subject, 1 double blind randomized placebo-controlled. Each trial used the same rTMS protocol, provided at least 30 rTMS sessions, and delivered rTMS to the dorsolateral prefrontal cortex. MAIN MEASURES During each study's rTMS treatment phase, seizure occurrences were compared between active and placebo groups using logistic regression. After stratifying active group by presence/absence of seizure occurrences, sub-groups were compared using contingency chi-square tests of independence and relative risk (RR) ratios. RESULTS Two unique participants experienced seizures (1 active, 1 placebo). Post seizure, both participants returned to baseline neurobehavioral function. Both participants received antiepileptics during remaining rTMS sessions, which were completed without further seizures. rTMS-related seizure incidence rate is 59 per 1000 persons. Logistic regression revealed no difference in seizure occurrence by treatment condition (active vs placebo) or when examined with seizure risk factors (P > .1). Presence of ventriculoperitoneal shunt elevated seizure risk (RR = 2.0). CONCLUSION Collectively, findings indicate a low-likelihood that the specified rTMS protocol exacerbates baseline seizure rates in persons with DoC after TBI. In presence of VP shunts, however, rTMS likely elevates baseline seizure risk and mitigation of this increased risk with pharmacological seizure prophylaxis should be considered.
Collapse
Affiliation(s)
- David Ripley
- Author Affiliations: HealthBridge Complex Care (Dr Ripley), Arlington Heights, Illinois; Shirley Ryan AbilityLab Brain Innovation Center (Drs Ripley, Krese, Roth, and Kestner), Chicago, Illinois; The Department of Veterans Affairs (VA), Research Service (Drs Krese, Kletzel, Livengood, Aaronson, Herrold, Blabas, Guernon, Kestner, Walsh, and Pape), Department of Neurology (Dr Patil), The Department of Veterans Affairs Mental Health Service Line (Drs Pacheco and Aaronson), Cooperative Studies Program Coordinating Center (Dr D. Bhaumik), Edward Hines Jr. VA Hospital, Hines, Illinois; Department of Neurological Surgery & Neurology (Drs Rosenow and Schuele), Department of Physical Medicine and Rehabilitation (Drs Schuele, Roth, Livengood, Rosenow and Pape), Department of Psychiatry and Behavioral Sciences (Dr Herrold), Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Neurology, Stritch School of Medicine (Dr Patil), Loyola University, Chicago, Illinois; Department of Psychiatry (Dr Aaronson), Department of Psychiatry, Biostatistical Research Center, Division of Epidemiology and Biostatistics (Drs R. Bhaumik and D. Bhaumik), University of Illinois at Chicago, Chicago, Illinois; and Department of Speech-Language Pathology (Dr Guernon), Lewis University, Romeoville, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wang Y, Yen PS, Ajilore OA, Bhaumik DK. A novel biomarker selection method using multimodal neuroimaging data. PLoS One 2024; 19:e0289401. [PMID: 38573979 PMCID: PMC10994318 DOI: 10.1371/journal.pone.0289401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/18/2023] [Indexed: 04/06/2024] Open
Abstract
Identifying biomarkers is essential to obtain the optimal therapeutic benefit while treating patients with late-life depression (LLD). We compare LLD patients with healthy controls (HC) using resting-state functional magnetic resonance and diffusion tensor imaging data to identify neuroimaging biomarkers that may be potentially associated with the underlying pathophysiology of LLD. We implement a Bayesian multimodal local false discovery rate approach for functional connectivity, borrowing strength from structural connectivity to identify disrupted functional connectivity of LLD compared to HC. In the Bayesian framework, we develop an algorithm to control the overall false discovery rate of our findings. We compare our findings with the literature and show that our approach can better detect some regions never discovered before for LLD patients. The Hub of our discovery related to various neurobehavioral disorders can be used to develop behavioral interventions to treat LLD patients who do not respond to antidepressants.
Collapse
Affiliation(s)
- Yue Wang
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Pei-Shan Yen
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Olusola A. Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Dulal K. Bhaumik
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
4
|
Zhuang Y, Zhai W, Li Q, Jiao H, Ge Q, Rong P, He J. Effects of simultaneous transcutaneous auricular vagus nerve stimulation and high-definition transcranial direct current stimulation on disorders of consciousness: a study protocol. Front Neurol 2023; 14:1165145. [PMID: 37693756 PMCID: PMC10483839 DOI: 10.3389/fneur.2023.1165145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Background Non-invasive brain stimulation (NIBS) techniques are now widely used in patients with disorders of consciousness (DOC) for accelerating their recovery of consciousness, especially minimally conscious state (MCS). However, the effectiveness of single NIBS techniques for consciousness rehabilitation needs further improvement. In this regard, we propose to enhance from bottom to top the thalamic-cortical connection by using transcutaneous auricular vagus nerve stimulation (taVNS) and increase from top to bottom cortical-cortical connections using simultaneous high-definition transcranial direct current stimulation (HD-tDCS) to reproduce the network of consciousness. Methods/design The study will investigate the effect and safety of simultaneous joint stimulation (SJS) of taVNS and HD-tDCS for the recovery of consciousness. We will enroll 84 MCS patients and randomize them into two groups: a single stimulation group (taVNS and HD-tDCS) and a combined stimulation group (SJS and sham stimulation). All patients will undergo a 4-week treatment. The primary outcome will be assessed using the coma recovery scale-revised (CRS-R) at four time points to quantify the effect of treatment: before treatment (T0), after 1 week of treatment (T1), after 2 weeks of treatment (T2), and after 4 weeks of treatment (T3). At the same time, nociception coma scale-revised (NCS-R) and adverse effects (AEs) will be collected to verify the safety of the treatment. The secondary outcome will involve an analysis of electroencephalogram (EEG) microstates to assess the response mechanisms of dynamic brain networks to SJS. Additionally, CRS-R and AEs will continue to be obtained for a 3-month follow-up (T4) after the end of the treatment. Discussion This study protocol aims to innovatively develop a full-time and multi-brain region combined neuromodulation paradigm based on the mesocircuit model to steadily promote consciousness recovery by restoring thalamocortical and cortical-cortical interconnections.
Collapse
Affiliation(s)
- Yutong Zhuang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, The Second Clinical College of Southern Medical University, Guangzhou, China
| | - Weihang Zhai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Li
- College of Anesthesiology, Shanxi Medical University, Taiyuan, China
| | - Haoyang Jiao
- Institute of Documentation, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Vatrano M, Nemirovsky IE, Tonin P, Riganello F. Assessing Consciousness through Neurofeedback and Neuromodulation: Possibilities and Challenges. Life (Basel) 2023; 13:1675. [PMID: 37629532 PMCID: PMC10455583 DOI: 10.3390/life13081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback is a non-invasive therapeutic approach that has gained traction in recent years, showing promising results for various neurological and psychiatric conditions. It involves real-time monitoring of brain activity, allowing individuals to gain control over their own brainwaves and improve cognitive performance or alleviate symptoms. The use of electroencephalography (EEG), such as brain-computer interface (BCI), transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), has been instrumental in developing neurofeedback techniques. However, the application of these tools in patients with disorders of consciousness (DoC) presents unique challenges. In this narrative review, we explore the use of neurofeedback in treating patients with DoC. More specifically, we discuss the advantages and challenges of using tools such as EEG neurofeedback, tDCS, TMS, and BCI for these conditions. Ultimately, we hope to provide the neuroscientific community with a comprehensive overview of neurofeedback and emphasize its potential therapeutic applications in severe cases of impaired consciousness levels.
Collapse
Affiliation(s)
- Martina Vatrano
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Idan Efim Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Paolo Tonin
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| | - Francesco Riganello
- S. Anna Institute, Research in Advanced Neurorehabilitation, Via Siris, 11, 88900 Crotone, Italy;
| |
Collapse
|
6
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
7
|
Luauté J, Beaudoin-Gobert M. Optimising recovery of consciousness after coma. From bench to bedside and vice versa. Presse Med 2023; 52:104165. [PMID: 36948412 DOI: 10.1016/j.lpm.2023.104165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Several methods have been proposed to foster recovery of consciousness in patients with disorders of consciousness (DoC). OBJECTIVE Critically assess pharmacological and non-pharmacological treatments for patients with chronic DoC. METHODS A narrative mini-review, and critical analysis of the scientific literature on the various proposed therapeutic approaches, with particular attention to level of evidence, risk-benefit ratio, and feasibility. RESULTS AND DISCUSSION Personalised sensory stimulation, median nerve stimulation, transcranial direct current stimulation (tDCS), amantadine and zolpidem all have favourable risk-benefit ratios and are easy to implement in clinical practice. These treatments should be proposed to every patient with chronic DoC. Comprehensive patient management should also include regular lifting, pain assessment and treatment, attempts to restore sleep and circadian rhythms, implementation of rest periods, comfort and nursing care, and a rehabilitation program with a multi-disciplinary team with expertise in this field. More invasive treatments may cause adverse effects and require further investigation to confirm preliminary, encouraging results and to better define responders' intervention parameters. Scientific studies are essential and given the severity of the disability and handicap that results from DoC, research in this area should aim to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Luauté
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France; Hôpital Henry Gabrielle, Saint-Genis Laval, Hospices Civils de Lyon, 69230 France.
| | - Maude Beaudoin-Gobert
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Trajectoires, F-69500 Bron, France
| |
Collapse
|
8
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
9
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Arvin S, Yonehara K, Glud AN. Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy. Biomedicines 2022; 10:biomedicines10092317. [PMID: 36140418 PMCID: PMC9496064 DOI: 10.3390/biomedicines10092317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Brain disease has become one of this century’s biggest health challenges, urging the development of novel, more effective treatments. To this end, neuromodulation represents an excellent method to modulate the activity of distinct neuronal regions to alleviate disease. Recently, the medical indications for neuromodulation therapy have expanded through the adoption of the idea that neurological disorders emerge from deficits in systems-level structures, such as brain waves and neural topology. Connections between neuronal regions are thought to fluidly form and dissolve again based on the patterns by which neuronal populations synchronize. Akin to a fire that may spread or die out, the brain’s activity may similarly hyper-synchronize and ignite, such as seizures, or dwindle out and go stale, as in a state of coma. Remarkably, however, the healthy brain remains hedged in between these extremes in a critical state around which neuronal activity maneuvers local and global operational modes. While it has been suggested that perturbations of this criticality could underlie neuropathologies, such as vegetative states, epilepsy, and schizophrenia, a major translational impact is yet to be made. In this hypothesis article, we dissect recent computational findings demonstrating that a neural network’s short- and long-range connections have distinct and tractable roles in sustaining the critical regime. While short-range connections shape the dynamics of neuronal activity, long-range connections determine the scope of the neuronal processes. Thus, to facilitate translational progress, we introduce topological and dynamical system concepts within the framework of criticality and discuss the implications and possibilities for therapeutic neuromodulation guided by topological decompositions.
Collapse
Affiliation(s)
- Simon Arvin
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
- Correspondence: ; Tel.: +45 6083-1275
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience—DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Ole Worms Allé 8, 8000 Aarhus C, Denmark
- Multiscale Sensory Structure Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience—CENSE, Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, 8200 Aarhus N, Denmark
- Department of Neurosurgery, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11 Building A, 8200 Aarhus N, Denmark
| |
Collapse
|
11
|
Khormali M, Heidari S, Ahmadi S, Arab Bafrani M, Baigi V, Sharif-Alhoseini M. N-methyl-D-aspartate receptor antagonists in improving cognitive deficits following traumatic brain injury: a systematic review. Brain Inj 2022; 36:1071-1088. [PMID: 35997315 DOI: 10.1080/02699052.2022.2109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To review the role of N-methyl-D-aspartate receptor (NMDAR) antagonists in managing post-TBI cognitive deficits. METHODS A search of PubMed, Embase, and Cochrane was conducted on Jan 12, 2021 without publication date or language restriction. RESULTS Forty-seven studies were included, involving 20 (42.6%) randomized controlled trials. Four (8.5%) studies had a low risk of bias (RoB), while 34 (72.3%) had unclear and nine (19.2%) had high RoB. Six NMDAR antagonists had been investigated: amantadine (n = 32), memantine (n = 4), magnesium (n = 4), traxoprodil (n = 3), selfotel (n = 2), and dextromethorphan (n = 2). CONCLUSION Although some benefits were observed, there are still some concerns regarding the efficacy and safety of NMDAR antagonists in improving post-TBI cognitive deficits. Further research is required to examine whether (i) these agents, notably amantadine, could accelerate cognitive improvement and shorten the hospital stay, (ii) these agents affect different cognitive domains/subdomains in the same direction, (iii) an optimal therapeutic time window exists, (iv) a member of this drug class can be proved to be effective without interfering in non-excitotoxic actions of glutamate, (v) they can be more effective as part of combination therapies or in particular subgroups of patients with TBI.
Collapse
Affiliation(s)
- Moein Khormali
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Heidari
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Melika Arab Bafrani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vali Baigi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Sharif-Alhoseini
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Irzan H, Pozzi M, Chikhladze N, Cebanu S, Tadevosyan A, Calcii C, Tsiskaridze A, Melbourne A, Strazzer S, Modat M, Molteni E. Emerging Treatments for Disorders of Consciousness in Paediatric Age. Brain Sci 2022; 12:198. [PMID: 35203961 PMCID: PMC8870410 DOI: 10.3390/brainsci12020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022] Open
Abstract
The number of paediatric patients living with a prolonged Disorder of Consciousness (DoC) is growing in high-income countries, thanks to substantial improvement in intensive care. Life expectancy is extending due to the clinical and nursing management achievements of chronic phase needs, including infections. However, long-known pharmacological therapies such as amantadine and zolpidem, as well as novel instrumental approaches using direct current stimulation and, more recently, stem cell transplantation, are applied in the absence of large paediatric clinical trials and rigorous age-balanced and dose-escalated validations. With evidence building up mainly through case reports and observational studies, there is a need for well-designed paediatric clinical trials and specific research on 0-4-year-old children. At such an early age, assessing residual and recovered abilities is most challenging due to the early developmental stage, incompletely learnt motor and cognitive skills, and unreliable communication; treatment options are also less explored in early age. In middle-income countries, the lack of rehabilitation services and professionals focusing on paediatric age hampers the overall good assistance provision. Young and fast-evolving health insurance systems prevent universal access to chronic care in some countries. In low-income countries, rescue networks are often inadequate, and there is a lack of specialised and intensive care, difficulty in providing specific pharmaceuticals, and lower compliance to intensive care hygiene standards. Despite this, paediatric cases with DoC are reported, albeit in fewer numbers than in countries with better-resourced healthcare systems. For patients with a poor prospect of recovery, withdrawal of care is inhomogeneous across countries and still heavily conditioned by treatment costs as well as ethical and cultural factors, rather than reliant on protocols for assessment and standardised treatments. In summary, there is a strong call for multicentric, international, and global health initiatives on DoC to devote resources to the paediatric age, as there is now scope for funders to invest in themes specific to DoC affecting the early years of the life course.
Collapse
Affiliation(s)
- Hassna Irzan
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
| | - Nino Chikhladze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Serghei Cebanu
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Artashes Tadevosyan
- Department of Public Health and Healthcare Organization, Yerevan State Medical University, Yerevan 0025, Armenia;
| | - Cornelia Calcii
- Faculty of Medicine, Nicolae Testemitanu State University of Medicine and Pharmacy, MD-2004 Chišināu, Moldova; (S.C.); (C.C.)
| | - Alexander Tsiskaridze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia; (N.C.); (A.T.)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 7JE, UK
| | - Sandra Strazzer
- Scientific Institute IRCCS E. Medea, Acquired Brain Injury Unit, 22040 Bosisio Parini, Italy; (M.P.); (S.S.)
- Rehabilitation Service, “Usratuna” Health and Rehabilitation Centre, Juba, South Sudan
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| | - Erika Molteni
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London WC2R 2LS, UK; (H.I.); (A.M.); (M.M.)
| |
Collapse
|
13
|
O'Neal CM, Schroeder LN, Wells AA, Chen S, Stephens TM, Glenn CA, Conner AK. Patient Outcomes in Disorders of Consciousness Following Transcranial Magnetic Stimulation: A Systematic Review and Meta-Analysis of Individual Patient Data. Front Neurol 2021; 12:694970. [PMID: 34475848 PMCID: PMC8407074 DOI: 10.3389/fneur.2021.694970] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: There are few treatments with limited efficacy for patients with disorders of consciousness (DoC), such as minimally conscious and persistent vegetative state (MCS and PVS). Objective: In this meta-analysis of individual patient data (IPD), we examine studies utilizing transcranial magnetic stimulation (TMS) as a treatment in DoC to determine patient and protocol-specific factors associated with improved outcomes. Methods: We conducted a systematic review of PubMed, Ovid Medline, and Clinicaltrials.gov through April 2020 using the following terms: “minimally conscious state,” or “persistent vegetative state,” or “unresponsive wakefulness syndrome,” or “disorders of consciousness” and “transcranial magnetic stimulation.” Studies utilizing TMS as an intervention and reporting individual pre- and post-TMS Coma Recovery Scale-Revised (CRS-R) scores and subscores were included. Studies utilizing diagnostic TMS were excluded. We performed a meta-analysis at two time points to generate a pooled estimate for absolute change in CRS-R Index, and performed a second meta-analysis to determine the treatment effect of TMS using data from sham-controlled crossover studies. A linear regression model was also created using significant predictors of absolute CRS-R index change. Results: The search yielded 118 papers, of which 10 papers with 90 patients were included. Patients demonstrated a mean pooled absolute change in CRS-R Index of 2.74 (95% CI, 0.62–4.85) after one session of TMS and 5.88 (95% CI, 3.68–8.07) at last post-TMS CRS-R assessment. The standardized mean difference between real rTMS and sham was 2.82 (95% CI, −1.50 to 7.14), favoring rTMS. The linear regression model showed that patients had significantly greater CRS-R index changes if they were in MCS, had an etiology of stroke or intracranial hemorrhage, received 10 or more sessions of TMS, or if TMS was initiated within 3 months from injury. Conclusions: TMS may improve outcomes in MCS and PVS. Further evaluation with randomized, clinical trials is necessary to determine its efficacy in this patient population.
Collapse
Affiliation(s)
- Christen M O'Neal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Lindsey N Schroeder
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Allison A Wells
- Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sixia Chen
- Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Tressie M Stephens
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Chad A Glenn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
14
|
Treating Traumatic Brain Injuries with Electroceuticals: Implications for the Neuroanatomy of Consciousness. NEUROSCI 2021. [DOI: 10.3390/neurosci2030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
According to the Centers for Disease Control and Prevention (CDC), traumatic brain injury (TBI) is the leading cause of loss of consciousness, long-term disability, and death in children and young adults (age 1 to 44). Currently, there are no United States Food and Drug Administration (FDA) approved pharmacological treatments for post-TBI regeneration and recovery, particularly related to permanent disability and level of consciousness. In some cases, long-term disorders of consciousness (DoC) exist, including the vegetative state/unresponsive wakefulness syndrome (VS/UWS) characterized by the exhibition of reflexive behaviors only or a minimally conscious state (MCS) with few purposeful movements and reflexive behaviors. Electroceuticals, including non-invasive brain stimulation (NIBS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS) have proved efficacious in some patients with TBI and DoC. In this review, we examine how electroceuticals have improved our understanding of the neuroanatomy of consciousness. However, the level of improvements in general arousal or basic bodily and visual pursuit that constitute clinically meaningful recovery on the Coma Recovery Scale-Revised (CRS-R) remain undefined. Nevertheless, these advancements demonstrate the importance of the vagal nerve, thalamus, reticular activating system, and cortico-striatal-thalamic-cortical loop in the process of consciousness recovery.
Collapse
|
15
|
Therapies to Restore Consciousness in Patients with Severe Brain Injuries: A Gap Analysis and Future Directions. Neurocrit Care 2021; 35:68-85. [PMID: 34236624 PMCID: PMC8266715 DOI: 10.1007/s12028-021-01227-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Background/Objective For patients with disorders of consciousness (DoC) and their families, the search for new therapies has been a source of hope and frustration. Almost all clinical trials in patients with DoC have been limited by small sample sizes, lack of placebo groups, and use of heterogeneous outcome measures. As a result, few therapies have strong evidence to support their use; amantadine is the only therapy recommended by current clinical guidelines, specifically for patients with DoC caused by severe traumatic brain injury. To foster and advance development of consciousness-promoting therapies for patients with DoC, the Curing Coma Campaign convened a Coma Science Work Group to perform a gap analysis. Methods We consider five classes of therapies: (1) pharmacologic; (2) electromagnetic; (3) mechanical; (4) sensory; and (5) regenerative. For each class of therapy, we summarize the state of the science, identify gaps in knowledge, and suggest future directions for therapy development. Results Knowledge gaps in all five therapeutic classes can be attributed to the lack of: (1) a unifying conceptual framework for evaluating therapeutic mechanisms of action; (2) large-scale randomized controlled trials; and (3) pharmacodynamic biomarkers that measure subclinical therapeutic effects in early-phase trials. To address these gaps, we propose a precision medicine approach in which clinical trials selectively enroll patients based upon their physiological receptivity to targeted therapies, and therapeutic effects are measured by complementary behavioral, neuroimaging, and electrophysiologic endpoints. Conclusions This personalized approach can be realized through rigorous clinical trial design and international collaboration, both of which will be essential for advancing the development of new therapies and ultimately improving the lives of patients with DoC. Supplementary Information The online version contains supplementary material available at 10.1007/s12028-021-01227-y.
Collapse
|
16
|
|