1
|
Xiang L, Bansal S, Wu AY, Roberts TL. Pathway of care for visual and vestibular rehabilitation after mild traumatic brain injury: a critical review. Brain Inj 2022; 36:911-920. [PMID: 35918848 PMCID: PMC10134507 DOI: 10.1080/02699052.2022.2105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PRIMARY OBJECTIVE To review the pathway to care for treatment and management of patients receiving visual and vestibular rehabilitation after mild traumatic brain injury (mTBI). METHODS & PROCEDURES English scientific peer-reviewed articles from PubMed, CINAHL, Embase, and PsycINFO between 2000 and 2020 were first screened by title and abstract, then those selected underwent full-text review and analysis. MAIN OUTCOMES & RESULTS The database search yielded 1640 results and after title and abstract review, 75 articles were selected for full-text screening, from which 8 were included in the qualitative synthesis. Current evidence includes a limited number of retrospective cohort studies and case studies. CONCLUSIONS Many patients with visual and vestibular deficits following mTBI do not receive rehabilitation services until months following their injury as there is no standardized pathway to care for patients for visual and vestibular rehabilitation. Barriers to establishing a standardized pathway are the lack of natural history data for visual and vestibular function following mTBI and the lack of randomized clinical trials establishing the efficacy of rehabilitation in patients following mTBI.
Collapse
Affiliation(s)
- Lucille Xiang
- School of Physical and Occupational Therapy, McGill University Faculty of Medicine and Health Sciences, Montreal, Quebec, Canada.,School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Surbhi Bansal
- Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, California, USA
| | - Albert Y Wu
- Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, California, USA
| | - Tawna L Roberts
- Spencer Center for Vision Research, Byers Eye Institute at Stanford University, Palo Alto, California, USA
| |
Collapse
|
2
|
Dubé C, Jin Y, Powers BG, Li G, Labelle A, Rivers MS, Gumboc IM, Bussières AE. Vision Evaluation Tools for Adults With Acquired Brain Injury: A Scoping Review. The Canadian Journal of Occupational Therapy 2021; 88:340-351. [PMID: 34658251 PMCID: PMC8640270 DOI: 10.1177/00084174211042955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background. Unrecognized visual deficits (VDs) following an acquired brain
injury (ABI) may impact clients’ rehabilitation. Little is known about evaluation tools
used in vision rehabilitation. Purpose. To systematically explore the
literature describing evaluation tools used for VD on adults with ABI.
Method. Using a scoping review methodology, we searched in MEDLINE(Ovid),
Embase, CINAHL, PsycINFO, and the grey literature from inception to 2020. Quantitative and
thematic analyses were performed. Findings. Of the 83 studies reporting on 86
evaluation tools, 47% used multiple tools to assess VD. Tools were mostly used by
occupational therapists and psychologists to evaluate intermediate, intermediate to high,
and high-level visual skills. Clinicians tend to select specific tools that focus on
different levels of the hierarchy of visual skills. Implications. Future
research should investigate the optimal timeframe for assessment of VD and the
psychometric properties of tools to ensure comprehensive VD evaluation.
Collapse
Affiliation(s)
- Camille Dubé
- Corresponding author: Camille Dubé,
McGill University Faculty of Medicine, School of Physical and Occupational Therapy, 3654
Prom Sir-William-Osler, Hosmer House 205, Montreal, QC H3G 1Y5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Morriss NJ, Conley GM, Hodgson N, Boucher M, Ospina-Mora S, Fagiolini M, Puder M, Mejia L, Qiu J, Meehan W, Mannix R. Visual Dysfunction after Repetitive Mild Traumatic Brain Injury in a Mouse Model and Ramifications on Behavioral Metrics. J Neurotrauma 2021; 38:2881-2895. [PMID: 34375128 PMCID: PMC10495212 DOI: 10.1089/neu.2021.0165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a major cause of morbidity and mortality with a poorly understood pathophysiology. Animal models have been increasingly utilized to better understand mTBI and recent research has identified visual deficits in these models that correspond to human literature. While visual impairment is being further characterized within TBI, the implications of impaired vision on behavioral tasks commonly utilized in animal models has not been well described thus far. Visual deficits may well confound behavioral tests that are believed to be isolated to cognitive functioning such as learning and memory. We utilized a mouse model of repetitive mTBI (rmTBI) to further characterize visual deficits using an optomotor task, electroretinogram, and visually evoked potential, and located likely areas of damage to the visual pathway. Mice were tested on multiple behavioral metrics, including a touchscreen conditional learning task to better identify the contribution of visual dysfunction to behavioral alterations. We found that rmTBI caused visual dysfunction resulting from damage distal to the retina that likely involves pathology within the optic nerve. Moreover, loss of vision led to poorer performance of rmTBI animals on classic behavioral tests such as the Morris water maze that would otherwise be attributed solely to learning and memory deficits. The touchscreen conditional learning task was able to differentiate rmTBI induced learning and memory dysfunction from visual impairment and is a valuable tool for elucidating subtle changes resulting from TBI.
Collapse
Affiliation(s)
- Nicholas J. Morriss
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Grace M. Conley
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nathaniel Hodgson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masen Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara Ospina-Mora
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michaela Fagiolini
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Puder
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Leo Mejia
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - William Meehan
- Harvard Medical School, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Boston, Massachusetts, USA
- Sports Concussion Clinic, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Crampton A, Garat A, Shepherd HA, Chevignard M, Schneider KJ, Katz-Leurer M, Gagnon IJ. Evaluating the Vestibulo-Ocular Reflex Following Traumatic Brain Injury: A Scoping Review. Brain Inj 2021; 35:1496-1509. [PMID: 34495773 DOI: 10.1080/02699052.2021.1972450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose:To identify the tests and tools used to evaluate vestibulo-ocular reflex (VOR) function after traumatic brain injury (TBI) in all age groups and across TBI severity.Methods: An electronic search was conducted to include relevant peer-reviewed literature published up to November 2019. Studies included those done with humans, of all ages, and had assessments of oculomotor and/or vestibulo-ocular function in TBI.Results: Of the articles selected (N = 48), 50% were published in 2018/2019. A majority targeted mild TBI, with equal focus on non-computerized versus computerized measures of VOR. Computerized assessment tools used were videonystagmography, dynamic visual acuity/gaze stability, rotary chair, and caloric irrigation. Non-computerized tests included the head thrust, dynamic visual acuity, gaze stability, head shaking nystagmus, rotary chair tests and the vestibular/oculomotor screening tool. High variability in administration protocols were identified. Namely: testing environment, distances/positioning/equipment used, active/passive state, procedures, rotation frequencies, and variables observed.Conclusions: There is a rapid growth of literature incorporating VOR tests in mild TBI but moderate and severe TBI continues to be under-represented. Determining how to pair a clinical test with a computerized tool and developing standardized protocols when administering tests will help in developing an optimal battery assessing the VOR in TBI.
Collapse
Affiliation(s)
- Adrienne Crampton
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - A Garat
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Sorbonne Université, GRC 24 Handicap Moteur et Cognitif et Réadaptation, Paris, France
| | - H A Shepherd
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - M Chevignard
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, Paris, France.,Sorbonne Université, GRC 24 Handicap Moteur et Cognitif et Réadaptation, Paris, France.,Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France
| | - K J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - M Katz-Leurer
- Physical Therapy Department, University of Tel-Aviv, Tel-Aviv, Israel
| | - I J Gagnon
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada.,Montreal Children's Hospital-McGill University Health Centre, Montreal, Canada
| |
Collapse
|
5
|
Storløs B, Roaldsen KS, Soberg HL, Kleffelgaard I. Patient-specific functioning related to dizziness and balance problems after traumatic brain injury – A cross sectional study using an ICF perspective. COGENT MEDICINE 2021. [DOI: 10.1080/2331205x.2021.1932247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Beate Storløs
- Traumatic Brain Injury Unit, Sunnaas Rehabilitation Hospital, 1453 Bjørnemyr, Norway
| | - Kirsti Skavberg Roaldsen
- Department of Research, Sunnaas Rehabilitation Hospital, 1453 Bjørnemyr, Norway
- Department of Physiotherapy, Faculty of Health Sciences, Oslo Metropolitan University, Box 4, St. Olavsplass, 0130 Oslo, Norway
- The Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway; Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, 23 100, 141 83 Huddinge, Sweden
| | - Helene Lundgaard Soberg
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, 0450 Oslo, Norway
- Department of Physiotherapy, Faculty of Health Sciences, Oslo Metropolitan University, Box 4, St. Olavsplass, 0130 Oslo, Norway
| | - Ingerid Kleffelgaard
- Department of Physical Medicine and Rehabilitation, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
6
|
Chevignard M, Câmara-Costa H, Dellatolas G. Pediatric traumatic brain injury and abusive head trauma. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:451-484. [PMID: 32958191 DOI: 10.1016/b978-0-444-64150-2.00032-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Childhood traumatic brain injury (TBI) commonly occurs during brain development and can have direct, immediately observable neurologic, cognitive, and behavioral consequences. However, it can also disrupt subsequent brain development, and long-term outcomes are a combination of preinjury development and abilities, consequences of brain injury, as well as delayed impaired development of skills that were immature at the time of injury. There is a growing number of studies on mild TBI/sport-related concussions, describing initial symptoms and their evolution over time and providing guidelines for effective management of symptoms and return to activity/school/sports. Mild TBI usually does not lead to long-term cognitive or academic consequences, despite reports of behavioral/psychologic issues postinjury. Regarding moderate to severe TBI, injury to the brain is more severe, with evidence of a number of detrimental consequences in various domains. Patients can display neurologic impairments (e.g., motor deficits, signs of cerebellar disorder, posttraumatic epilepsy), medical problems (e.g., endocrine pituitary deficits, sleep-wake abnormalities), or sensory deficits (e.g., visual, olfactory deficits). The most commonly reported deficits are in the cognitive-behavioral field, which tend to be significantly disabling in the long-term, impacting the development of autonomy, socialization and academic achievement, participation, quality of life, and later, independence and ability to enter the workforce (e.g., intellectual deficits, slow processing speed, attention, memory, executive functions deficits, impulsivity, intolerance to frustration). A number of factors influence outcomes following pediatric TBI, including preinjury stage of development and abilities, brain injury severity, age at injury (with younger age at injury most often associated with worse outcomes), and a number of family/environment factors (e.g., parental education and occupation, family functioning, parenting style, warmth and responsiveness, access to rehabilitation and care). Interventions should identify and target these specific factors, given their major role in postinjury outcomes. Abusive head trauma (AHT) occurs in very young children (most often <6 months) and is a form of severe TBI, usually associated with delay before appropriate care is sought. Outcomes are systematically worse following AHT than following accidental TBI, even when controlling for age at injury and injury severity. Children with moderate to severe TBI and AHT usually require specific, coordinated, multidisciplinary, and long-term rehabilitation interventions and school adaptations, until transition to adult services. Interventions should be patient- and family-centered, focusing on specific goals, comprising education about TBI, and promoting optimal parenting, communication, and collaborative problem-solving.
Collapse
Affiliation(s)
- Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Neurological Injury and Outreach Team for Children and Adolescents with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France; GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| | - Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Vestibular Rehabilitation for Dizziness and Imbalance Following Concussion: A Critically Appraised Topic. INTERNATIONAL JOURNAL OF ATHLETIC THERAPY & TRAINING 2019. [DOI: 10.1123/ijatt.2018-0007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Kleffelgaard I, Langhammer B, Hellstrom T, Sandhaug M, Tamber AL, Soberg HL. Dizziness-related disability following mild-moderate traumatic brain injury. Brain Inj 2017; 31:1436-1444. [PMID: 28972411 DOI: 10.1080/02699052.2017.1377348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the associations between dizziness-related disability after mild- moderate Traumatic Brain Injury (TBI) and personal factors, injury-related factors and post-injury functioning using the International Classification of Functioning, Disability and Health (ICF) as a framework. METHODS Baseline assessments for a Randomised Controlled Trial (RCT) were obtained for 65 patients (mean age 39.2 years; SD 12.9 years; 70.8% women) who had dizziness and reduced balance 2-6 months after injury. The severity of the brain injury, physical and psychological self-reported symptoms and results from the performance based tests were used as independent variables. The main outcome measure (dependent variable) was the Dizziness Handicap Inventory (DHI). RESULTS Multivariate analyses showed that, the dizziness-related disability was predicted by pre-injury comorbidities (p ≤ 0.05) and was associated with self-reported vertigo symptoms (p < 0.001), reduced performance-based balance (p ≤ 0.05) and psychological distress (p ≤ 0.05). These factors accounted for 62% of the variance in DHI. CONCLUSION Dizziness and balance problems after mild-moderate TBI appear to be complex biopsychosocial phenomena. Assessments linked to the ICF domains of functioning might contribute to a broader understanding of the needs of these patients. Further, prospective clinical studies with non-dizzy control groups are needed to investigate dizziness-related disability after TBI.
Collapse
Affiliation(s)
- I Kleffelgaard
- a Dept. of Physical Medicine and Rehabilitation , Oslo University Hospital HF , Oslo , Norway.,b Faculty of Health Sciences , Oslo University College of Applied Sciences , Oslo, Norway.,c Faculty of Medicine , University of Oslo , Norway
| | - B Langhammer
- b Faculty of Health Sciences , Oslo University College of Applied Sciences , Oslo, Norway
| | - T Hellstrom
- a Dept. of Physical Medicine and Rehabilitation , Oslo University Hospital HF , Oslo , Norway
| | | | - A L Tamber
- b Faculty of Health Sciences , Oslo University College of Applied Sciences , Oslo, Norway
| | - H L Soberg
- a Dept. of Physical Medicine and Rehabilitation , Oslo University Hospital HF , Oslo , Norway.,b Faculty of Health Sciences , Oslo University College of Applied Sciences , Oslo, Norway.,c Faculty of Medicine , University of Oslo , Norway
| |
Collapse
|
9
|
Vestibular Rehabilitation After Traumatic Brain Injury: Case Series. Phys Ther 2016; 96:839-49. [PMID: 26586860 DOI: 10.2522/ptj.20150095] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/05/2015] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND PURPOSE There has been an increasing focus on vestibular rehabilitation (VR) after traumatic brain injury (TBI) in recent years. However, detailed descriptions of the content of and patient responses to VR after TBI are limited. The purposes of this case series are (1) to describe a modified, group-based VR intervention and (2) to examine changes in self-reported and performance-based outcome measures. CASE DESCRIPTION Two women and 2 men (aged 24-45 years) with mild TBI, dizziness, and balance problems participated in an 8-week intervention consisting of group sessions with guidance, individually modified VR exercises, a home exercise program, and an exercise diary. Self-reported and performance-based outcome measures were applied to assess the impact of dizziness and balance problems on functions related to activity and participation. OUTCOMES The intervention caused no adverse effects. Three of the 4 patients reported reduced self-perceived disability because of dizziness, diminished frequency and severity of dizziness, improved health-related quality of life, reduced psychological distress, and improved performance-based balance. The change scores exceeded the minimal detectable change, indicating a clinically significant change or improvement in the direction of age-related norms. The fourth patient did not change or improve in most outcome measures. DISCUSSION A modified, group-based VR intervention was safe and appeared to be viable and beneficial when addressing dizziness and balance problems after TBI. However, concurrent physical and psychological symptoms, other neurological deficits, and musculoskeletal problems might influence the course of central nervous system compensation and recovery. The present case series may be useful for tailoring VR interventions to patients with TBI. Future randomized controlled trials are warranted to evaluate the short- and long-term effects of VR after TBI.
Collapse
|
10
|
The Relationship Between Postconcussion Symptoms and Sexual Quality of Life in Individuals with Traumatic Brain Injury. SEXUALITY AND DISABILITY 2015. [DOI: 10.1007/s11195-015-9414-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Postural perturbations induced by a moving virtual environment are reduced in persons with brain injury when gripping a mobile object. J Neurol Phys Ther 2014; 38:125-33. [PMID: 24572500 DOI: 10.1097/npt.0000000000000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Gripping a mobile (unfixed) object increases standing postural stability in healthy individuals. We tested whether the same strategy is effective for stabilizing upright posture perturbed by a moving environment (virtual perturbation) in participants with traumatic brain injury (TBI). METHODS Fifteen participants with mild-to-moderate postural deficits after TBI and a comparison group of 15 age-matched healthy subjects participated in the study. Participants stood for 1 minute in front of a large screen with a projected three-dimensional image of a boat; for 30 seconds the boat remained stationary (no visual stimulation condition), and for 30 seconds the boat rocked on the water at a speed of 15°/s (visual stimulation condition). The visual stimulation was applied in pseudorandom order (during either the first or second half of the 1-minute trial). To analyze postural stability, the displacement and velocity of the center of mass in the sagittal and frontal planes were compared between groups and across 4 experimental conditions, including standing with/without visual stimulation and with/without gripping a 300-g object (short wooden stick) in the dominant hand. RESULTS Participants with TBI showed greater instability under all experimental conditions. The visual stimulation significantly increased postural oscillations in the sagittal plane by 35% to 63% across groups. Gripping a stick significantly reduced the stimulation-induced instability in the sagittal plane by 19% to 29%, although not to the level of the no-stimulation condition in either group. CONCLUSION The stabilizing effect of gripping an external object in participants with TBI was confirmed. A possibility of using this effect as a balance aid strategy requires further investigation.
Collapse
|
12
|
Kaufman DR, Puckett MJ, Smith MJ, Wilson KS, Cheema R, Landers MR. Test–retest reliability and responsiveness of gaze stability and dynamic visual acuity in high school and college football players. Phys Ther Sport 2014; 15:181-8. [DOI: 10.1016/j.ptsp.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/24/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022]
|
13
|
Moen KT, Jørgensen L, Olsen A, Håberg A, Skandsen T, Vik A, Brubakk AM, Evensen KAI. High-level mobility in chronic traumatic brain injury and its relationship with clinical variables and magnetic resonance imaging findings in the acute phase. Arch Phys Med Rehabil 2014; 95:1838-45. [PMID: 24814461 DOI: 10.1016/j.apmr.2014.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To compare high-level mobility in individuals with chronic moderate-to-severe traumatic brain injury (TBI) with matched healthy controls, and to investigate whether clinical variables and magnetic resonance imaging (MRI) findings in the acute phase can predict high-level motor performance in the chronic phase. DESIGN A longitudinal follow-up study. SETTING A level 1 trauma center. PARTICIPANTS Individuals (N=136) with chronic TBI (n=65) and healthy matched peers (n=71). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES High-Level Mobility Assessment Tool (HiMAT) and the revised version of the HiMAT performed at a mean of 2.8 years (range, 1.5-5.4y) after injury. RESULTS Participants with chronic TBI had a mean HiMAT score of 42.7 (95% confidence interval [CI], 40.2-45.2) compared with 47.7 (95% CI, 46.1-49.2) in the control group (P<.01). Group differences were also evident using the revised HiMAT (P<.01). Acute-phase clinical variables and MRI findings explained 58.8% of the variance in the HiMAT score (P<.001) and 59.9% in the revised HiMAT score (P<.001). Lower HiMAT scores were associated with female sex (P=.031), higher age at injury (P<.001), motor vehicle collisions (P=.030), and posttraumatic amnesia >7 days (P=.048). There was a tendency toward an association between lower scores and diffuse axonal injury in the brainstem (P=.075). CONCLUSIONS High-level mobility was reduced in participants with chronic, either moderate or severe TBI compared with matched peers. Clinical variables in the acute phase were significantly associated with high-level mobility performance in participants with TBI, but the role of early MRI findings needs to be further investigated. The findings of this study suggest that the clinical variables in the acute phase may be useful in predicting high-level mobility outcome in the chronic phase.
Collapse
Affiliation(s)
- Kine Therese Moen
- Stiftelsen CatoSenteret, Department of Medical Rehabilitation Services, Son, Norway.
| | - Lone Jørgensen
- Department of Health and Care Sciences and the Tromsø Endocrine Research Group, University of Tromsø, Tromsø, Norway; Department of Clinical Therapeutic Services, University Hospital of North Norway, Tromsø, Norway
| | - Alexander Olsen
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta Håberg
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toril Skandsen
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Vik
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kari Anne I Evensen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physiotherapy, Trondheim Municipality, Norway
| |
Collapse
|