1
|
Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, Rashid A, Jaskolka MC, Myers RL, Lam BL, Bailey ST, Comander JI, Lauer AK, Maguire AM, Pennesi ME. Gene Editing for CEP290-Associated Retinal Degeneration. N Engl J Med 2024; 390:1972-1984. [PMID: 38709228 PMCID: PMC11389875 DOI: 10.1056/nejmoa2309915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
BACKGROUND CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).
Collapse
Affiliation(s)
- Eric A Pierce
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Tomas S Aleman
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Kanishka T Jayasundera
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Bright S Ashimatey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Keunpyo Kim
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Alia Rashid
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Michael C Jaskolka
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Rene L Myers
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Byron L Lam
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Steven T Bailey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Jason I Comander
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Andreas K Lauer
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Albert M Maguire
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Mark E Pennesi
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| |
Collapse
|
2
|
Reith M, Stingl K, Kühlewein L, Kempf M, Stingl K, Langrova H. Comparison of Full-Field Stimulus Threshold Measurements in Patients With Retinitis Pigmentosa and Healthy Subjects With Dilated and Nondilated Pupil. Transl Vis Sci Technol 2024; 13:23. [PMID: 38630470 PMCID: PMC11033600 DOI: 10.1167/tvst.13.4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose The common protocol of full-field stimulus threshold (FST) testing recommends pupil dilation. The aim of this study is to investigate the difference between FST measurements with dilated and nondilated pupils in healthy subjects and patients with retinitis pigmentosa (RP). Methods Twenty healthy subjects and 20 RP patients were selected. One pupil of each subject was dilated; the other eye was measured in physiological width of the pupil. The FST was conducted using Diagnosys Espion E2/E3 with white, blue, and red stimuli. Statistical analysis was conducted with a mixed-model analysis of variance and a paired t-test. Results The statistical analysis revealed a significant difference between measurements of dilated and nondilated pupils with the following: blue stimuli for all subjects and groups except those with highly progressed RP; white stimuli for all tested subjects in total, for RP patients with better-preserved visual field (VF), and rod-mediated FST response; and red stimuli for RP patients with better-preserved VF and rod-mediated FST response. On average, the difference between the FST values for RP patients were -3.2 ± 3 dB for blue, -2.3 ± 2.9 dB for white, and -0.83 ± 3 dB for red stimuli. The correlation between the FST values of dilated and nondilated pupils with all three stimuli was linear. Conclusions Current recommendations are to perform FST with dilated pupils. However, based on this study's findings, pupil dilation can be omitted for clinical diagnostics or rough follow-ups. Translational Relevance Our data provide useful information for the clinical use of FST.
Collapse
Affiliation(s)
- Milda Reith
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Hana Langrova
- Charles University, Medical Faculty in Hradec Kralove and Faculty Hospital, Department of Ophthalmology, Czech Republic
| |
Collapse
|
3
|
Öner A, Kahraman NS. Evaluation of Full-Field Stimulus Threshold Test Results in Retinitis Pigmentosa: Relationship with Full-Field Electroretinography, Multifocal Electroretinography, Optical Coherence Tomography, and Visual Field. Turk J Ophthalmol 2024; 54:23-31. [PMID: 38385317 PMCID: PMC10895166 DOI: 10.4274/tjo.galenos.2023.58485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Objectives The full-field stimulus threshold (FST) test was developed to evaluate the efficacy and safety of treatments of hereditary retinal diseases. In this study we performed the FST test in patients with retinitis pigmentosa (RP) and compared the results with findings from other ophthalmological tests. Materials and Methods The study included 51 intermediate and advanced RP patients and 21 normal subjects. All patients and controls underwent routine examination and ophthalmological tests including visual field, optical coherence tomography, full-field and multifocal electroretinography (mfERG), and FST tests. During FST testing, the perception thresholds of retina to the white, blue, and red FST were determined in decibels. Results The mean age of the patients and the controls were 35.2 and 33.5 years, respectively. For all RP patients, no response was obtained on full-field ERG. All subjects were able to perform reliable FST tests. The mean values of visual acuity and central macular thickness were significantly lower and visual field mean deviation values were significantly higher in the RP group than the controls. When we evaluated the mfERG findings, the mean P1 wave amplitudes in all rings were significantly lower and the mean peak times were significantly longer in RP patients than controls. In comparisons of FST test results, the mean values for white, blue, red and the difference between blue-red thresholds were significantly lower in the RP group than the control group. Conclusion The FST test is a fast and a reliable exam which can be done in subjects with poor visual acuity and reduced visual field. The results of this study confirm that the FST test can measure retinal sensitivity in severely affected RP subjects with flat flash ERG.
Collapse
Affiliation(s)
- Ayşe Öner
- Acıbadem Health Group, Taksim Hospital, Clinic of Ophthalmology, İstanbul, Türkiye
| | - Neslihan Sinim Kahraman
- Acıbadem University, Vocational School of Health Services, Division of Opticianry, İstanbul, Türkiye
| |
Collapse
|
4
|
Jolly JK, Grigg JR, McKendrick AM, Fujinami K, Cideciyan AV, Thompson DA, Matsumoto C, Asaoka R, Johnson C, Dul MW, Artes PH, Robson AG. ISCEV and IPS guideline for the full-field stimulus test (FST). Doc Ophthalmol 2024; 148:3-14. [PMID: 38238632 PMCID: PMC10879267 DOI: 10.1007/s10633-023-09962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/21/2024]
Abstract
The full-field stimulus test (FST) is a psychophysical technique designed for the measurement of visual function in low vision. The method involves the use of a ganzfeld stimulator, as used in routine full-field electroretinography, to deliver full-field flashes of light. This guideline was developed jointly by the International Society for Clinical Electrophysiology of Vision (ISCEV) and Imaging and Perimetry Society (IPS) in order to provide technical information, promote consistency of testing and reporting, and encourage convergence of methods for FST. It is intended to aid practitioners and guide the formulation of FST protocols, with a view to future standardisation.
Collapse
Affiliation(s)
- J K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK.
| | - J R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - A M McKendrick
- Lions Eye Institute, University of Western Australia, Perth, Australia
- School of Allied Health, University of Western Australia, Crawley, Australia
| | - K Fujinami
- Laboratory of Visual Physiology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
| | - A V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, University of Pennsylvania, Philadelphia, USA
| | - D A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - C Matsumoto
- Department of Ophthalmology, Kindai University, Osakasayama, Japan
| | - R Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
| | - C Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- School of Optometry, The Ohio State University, Columbus, IA, USA
| | - M W Dul
- Department of Biological and Vision Science, College of Optometry, State University of New York, New York, USA
| | - P H Artes
- Faculty of Health, University of Plymouth, Plymouth, UK
| | - A G Robson
- Institute of Ophthalmology, University College London, London, UK
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| |
Collapse
|
5
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|
6
|
Cideciyan AV, Jacobson SG, Ho AC, Krishnan AK, Roman AJ, Garafalo AV, Wu V, Swider M, Sumaroka A, Van Cauwenbergh C, Russell SR, Drack AV, Leroy BP, Schwartz MR, Girach A. Restoration of Cone Sensitivity to Individuals with Congenital Photoreceptor Blindness within the Phase 1/2 Sepofarsen Trial. OPHTHALMOLOGY SCIENCE 2022; 2:100133. [PMID: 36249682 PMCID: PMC9562351 DOI: 10.1016/j.xops.2022.100133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15–41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention Participants received a single intravitreal injection of sepofarsen (160 or 320 μg) into the study eye. Main Outcome Measures Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of –1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence: Artur V. Cideciyan, PhD, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 51 North 39th Street, Philadelphia, PA 19104.
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Arlene V. Drack
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
7
|
Russell SR, Drack AV, Cideciyan AV, Jacobson SG, Leroy BP, Van Cauwenbergh C, Ho AC, Dumitrescu AV, Han IC, Martin M, Pfeifer WL, Sohn EH, Walshire J, Garafalo AV, Krishnan AK, Powers CA, Sumaroka A, Roman AJ, Vanhonsebrouck E, Jones E, Nerinckx F, De Zaeytijd J, Collin RWJ, Hoyng C, Adamson P, Cheetham ME, Schwartz MR, den Hollander W, Asmus F, Platenburg G, Rodman D, Girach A. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med 2022; 28:1014-1021. [PMID: 35379979 PMCID: PMC9117145 DOI: 10.1038/s41591-022-01755-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.
Collapse
Affiliation(s)
- Stephen R Russell
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA.
| | - Arlene V Drack
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Allen C Ho
- Wills Eye Hospital/Mid Atlantic Retina, Philadelphia, PA, USA
| | - Alina V Dumitrescu
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Mitchell Martin
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Wanda L Pfeifer
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jean Walshire
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Alexandra V Garafalo
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun K Krishnan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian A Powers
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva Vanhonsebrouck
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Eltanara Jones
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fanny Nerinckx
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zabek O, Calzetti G, Prétot D, Scholl HPN, Della Volpe Waizel M. Full-field sensitivity threshold and the relation to the oxygen metabolic retinal function in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2022; 260:2517-2527. [PMID: 35355116 DOI: 10.1007/s00417-022-05638-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/17/2022] [Accepted: 03/19/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of our study was to evaluate retinal function with white light dark-adapted full-field sensitivity threshold (FST) and find possible correlations with metabolic function measured with retinal oximetry (RO) in patients with retinitis pigmentosa (RP). METHODS In this prospective observational study (BASEC 2020-00,122), FST and RO measurements were performed on 66 RP eyes (33 subjects, 12♀ 21♂) aged between 18 and 80 years (mean 43.2 years); all eyes were graded for disease severity. Main outcome parameters were white FST thresholds using the Diagnosys Espion system with the ColorDomeTM LED full-field stimulator (Diagnosys LLC, Lowell, MA) as well as the main RO parameters: the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, their difference (A-V SO2; %), and the corresponding mean diameters of the peripapillary retinal arterioles (D-A; μm) and venules (D-V; μm) recorded with the oxygen saturation tool of the Retinal Vessel Analyser (RVA; IMEDOS Systems UG, Jena, Germany). In addition, semi-automated kinetic perimetry (V4e, III4e, I4e, III3e isopters, Octopus 900®, Haag-Streit AG Bern, Switzerland) was performed and included in the linear mixed-effects models analysis calculated with SPSS®. RESULTS Neither the oxygen saturation parameters (p > 0.21) nor the D-A and D-V (p > 0.13) showed significant correlations with the FST. However, when compared systematically with the visual field (VF) areas of the different isopters, RO parameters V-SO2 (p = 0.024) and A-V SO2 (p < 0.02) showed significant correlations. Furthermore, both V-SO2 and A-V SO2 showed gradual changes with more pronounced impairment in oxygen metabolic function in advanced stages of RP when analyzed in subgroups of disease severity grades. CONCLUSION In contrast to standardized VF parameters, white dark-adapted FST appears not to correlate with retinal oxygen metabolic function measured with RO in patients with RP, suggesting that the two examinations may capture unrelated aspects of the retinal pathological process. However, RO showed a significant association with standardized VF testing parameters and may, therefore, offer an alternative outcome measure for interventional trials.
Collapse
Affiliation(s)
- Olga Zabek
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giacomo Calzetti
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | | | - Hendrik P N Scholl
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Maria Della Volpe Waizel
- Department of Ophthalmology, University Hospital Basel, University of Basel, Basel, Switzerland. .,Heuberger Eye Clinic, Olten, Switzerland.
| |
Collapse
|
9
|
William A, Dias Blak M, Eshref A, Gekeler F, Schatz A, Gekeler K. Chromatic Full-Field Stimulus Thresholds in Patients with Treatment-Naive Age-Related Macular Degeneration. Clin Ophthalmol 2022; 16:223-229. [PMID: 35125864 PMCID: PMC8809673 DOI: 10.2147/opth.s346291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate retinal sensitivity using chromatic full-field stimulus thresholds (FST) in patients with treatment naive exudative age-related macular degeneration (e-ARMD) before and during the first intravitreal anti-vascular endothelial growth factor (anti-VEGF) treatment. Patients and Methods After general ophthalmological examinations to diagnose patients with e-ARMD the FST, the central foveal thickness (FCt) and the visual acuity were assessed in 20 eyes of 20 patients during this prospective study. Examinations were performed before and during the first treatment series with three intravitreal anti-VEGF injections. Normal values for FST were assessed in 19 eyes of 19 healthy subjects. Results were analyzed using Student’s two-tailed t-test and Pearson’s correlation coefficients between all functional parameters. Results At baseline and before the 1st intravitreal anti-VEGF treatment, a moderately significant negative correlation between VA and FCt was found in the e-ARMD group (p = 0.02, r = −0.45 and p = 0.03, r = −0.45), respectively. After the 2nd intravitreal anti-VEGF injection, no significant correlation between VA and FCt was found (p = 0.12). However, a significant correlation between FCt and blue FST was evident (p = 0.04, r = 0.4). After the 3rd intravitreal anti-VEGF treatment, there was no correlation evident between VA and FCt (p = 0.31) but a high significant correlation between FCt and FST using red (p = 0.01, r = 0.53), green (p = 0.002, r = 0.6) and blue light (p = 0.007, r = 0.66). Conclusion During anti-VEGF treatment in patients with e-ARMD, the FST test showed higher significant correlations with the morphology measured by FCt, as it is the case for VA. These findings support that the FST test might serve as a valuable diagnostic tool for monitoring patients with e-ARMD and enhance functional assessment of retinal function under treatment with anti-VEGF.
Collapse
Affiliation(s)
- Antony William
- Department of Ophthalmology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Altan Eshref
- Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
| | - Florian Gekeler
- Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
- Centre for Ophthalmology, University Hospital Tuebingen, Tuebingen, Germany
| | - Andreas Schatz
- Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
- Centre for Ophthalmology, University Hospital Tuebingen, Tuebingen, Germany
- Correspondence: Andreas Schatz, Department of Ophthalmology, University Hospital Tuebingen, Tuebingen, Elfriede –Alhorn-Straße 7, Tuebingen, 72076, Germany, Tel +4970712988088, Email
| | - Katrin Gekeler
- Department of Ophthalmology, Klinikum Stuttgart, Stuttgart, Germany
- Centre for Ophthalmology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
10
|
Daich Varela M, Georgiou M, Hashem SA, Weleber RG, Michaelides M. Functional evaluation in inherited retinal disease. Br J Ophthalmol 2021; 106:1479-1487. [PMID: 34824084 DOI: 10.1136/bjophthalmol-2021-319994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/17/2021] [Indexed: 11/03/2022]
Abstract
Functional assessments are a fundamental part of the clinical evaluation of patients with inherited retinal diseases (IRDs). Their importance and impact have become increasingly notable, given the significant breadth and number of clinical trials and studies investigating multiple avenues of intervention across a wide range of IRDs, including gene, pharmacological and cellular therapies. Moreover, the fact that many clinical trials are reporting improvements in vision, rather than the previously anticipated structural stability/slowing of degeneration, makes functional evaluation of primary relevance. In this review, we will describe a range of methods employed to characterise retinal function and functional vision, beginning with tests variably included in the clinic, such as visual acuity, electrophysiological assessment and colour discrimination, and then discussing assessments often reserved for clinical trials/research studies such as photoaversion testing, full-field static perimetry and microperimetry, and vision-guided mobility testing; addressing perimetry in greatest detail, given it is commonly a primary outcome metric. We will focus on how these tests can help diagnose and monitor particular genotypes, also noting their limitations/challenges and exploring analytical methodologies for better exploiting functional measurements, as well as how they facilitate patient inclusion and stratification in clinical trials and serve as outcome measures.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK.,Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shaima A Hashem
- UCL Institute of Ophthalmology, University College London, London, UK.,Moorfields Eye Hospital City Road Campus, London, UK
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK .,Moorfields Eye Hospital City Road Campus, London, UK
| |
Collapse
|
11
|
Fars J, Pasutto F, Kremers J, Huchzermeyer C. Perifoveal Cone- and Rod-Mediated Temporal Contrast Sensitivities in Stargardt Disease/Fundus Flavimaculatus. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34807235 PMCID: PMC8626853 DOI: 10.1167/iovs.62.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to compare L-cone-driven, S-cone-driven, and rod-driven temporal contrast sensitivities (tCSs) in patients with Stargardt disease 1/fundus flavimaculatus (STGD1/FF). Methods Fourteen patients (eight male, six female; mean age, 43.21 ± 13.18 years) with genetically confirmed STGD1/FF participated in this study. A dedicated light-emitting diode stimulator was used to measure perifoveal tCSs in an annular test field (1°-6° of visual eccentricity) at temporal frequencies between 1 and 20 Hz. Photoreceptor classes were isolated with the triple silent substitution technique. To compare functional damage among photoreceptor classes, sensitivity deviations (decibels) were calculated based on age-related normal values and then averaged across those frequencies where perception is mediated by the same post-receptoral pathway (L-cone red-green opponent pathway: 1, 2, 4 Hz; luminance pathway: 12, 16, 20 Hz; S-cone pathway: 1, 2, 4 Hz; fast rod pathway: 8, 10, 12 Hz). Sensitivity deviations were compared with infrared scanning laser ophthalmoscopy (IR-SLO) and standard automated perimetry (SAP). Results Photoreceptor-driven tCSs were generally lower in patients with STGD1/FF than in normal subjects but were without systematic differences among photoreceptors. Although sensitivity deviations were significantly correlated between each other, only luminance-driven L-cone sensitivity deviations were significantly correlated with the IR-SLO area of hyporeflectance (AoH) and SAP central mean deviation within 6° eccentricity (MD6deg). Conclusions No systematic differences between photoreceptor classes were detected; however, our data suggest that temporal contrasts detected by the luminance pathway were closely correlated with other clinical parameters (AoH and MD6deg) and might be most useful as functional biomarkers in clinical trials.
Collapse
Affiliation(s)
- Julien Fars
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Roman AJ, Cideciyan AV, Wu V, Garafalo AV, Jacobson SG. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog Retin Eye Res 2021; 87:101000. [PMID: 34464742 DOI: 10.1016/j.preteyeres.2021.101000] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Disease mechanisms have become better understood in previously incurable forms of early-onset severe retinal dystrophy, such as Leber congenital amaurosis (LCA). This has led to novel treatments and clinical trials that have shown some success. Standard methods to measure vision were difficult if not impossible to perform in severely affected patients with low vision and nystagmus. To meet the need for visual assays, we devised a psychophysical method, which we named full-field stimulus testing (FST). From early versions based on an automated perimeter, we advanced FST to a more available light-emitting diode platform. The journey from invention to use of such a technique in our inherited retinal degeneration clinic is reviewed and many of the lessons learned over the 15 years of application of FST are explained. Although the original purpose and application of FST was to quantify visual thresholds in LCA, there are rare opportunities for FST also to be used beyond LCA to measure aspects of vision in other inherited retinal degenerations; examples are given. The main goal of the current review, however, remains to enable investigators studying and treating LCA to understand how to best use FST and how to reduce artefact and confounding complexities so the test results become more valuable to the understanding of LCA diseases and results of novel interventions.
Collapse
Affiliation(s)
- Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Cideciyan AV, Jacobson SG, Ho AC, Garafalo AV, Roman AJ, Sumaroka A, Krishnan AK, Swider M, Schwartz MR, Girach A. Durable vision improvement after a single treatment with antisense oligonucleotide sepofarsen: a case report. Nat Med 2021; 27:785-789. [PMID: 33795869 PMCID: PMC8127404 DOI: 10.1038/s41591-021-01297-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Leber congenital amaurosis due to CEP290 ciliopathy is being explored by treatment with the antisense oligonucleotide (AON) sepofarsen. One patient who was part of a larger cohort (ClinicalTrials.gov NCT03140969 ) was studied for 15 months after a single intravitreal sepofarsen injection. Concordant measures of visual function and retinal structure reached a substantial efficacy peak near 3 months after injection. At 15 months, there was sustained efficacy, even though there was evidence of reduction from peak response. Efficacy kinetics can be explained by the balance of AON-driven new CEP290 protein synthesis and a slow natural rate of CEP290 protein degradation in human foveal cone photoreceptors.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen C Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia PA, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
14
|
Talib M, Schooneveld MJ, Wijnholds J, Genderen MM, Schalij‐Delfos NE, Talsma HE, Florijn RJ, Brink JB, Cremers FP, Thiadens AA, Born LI, Hoyng CB, Meester‐Smoor MA, Bergen AA, Boon CJ. Defining inclusion criteria and endpoints for clinical trials: a prospective cross-sectional study in CRB1-associated retinal dystrophies. Acta Ophthalmol 2021; 99:e402-e414. [PMID: 33528094 PMCID: PMC8248330 DOI: 10.1111/aos.14597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
Purpose To investigate the retinal structure and function in patients with CRB1‐associated retinal dystrophies (RD) and to explore potential clinical endpoints. Methods In this prospective cross‐sectional study, 22 patients with genetically confirmed CRB1‐RD (aged 6–74 years), and who had a decimal best‐corrected visual acuity (BCVA) ≥ 0.05 at the last visit, were studied clinically with ETDRS BCVA, corneal topography, spectral‐domain optical coherence tomography (SD‐OCT), fundus autofluorescence, Goldmann visual field (VF), microperimetry, full‐field electroretinography (ERG) and full‐field stimulus testing (FST). Ten patients were from a genetic isolate (GI). Results Patients had retinitis pigmentosa (n = 19; GI and non‐GI), cone‐rod dystrophy (n = 2; GI) or macular dystrophy (n = 1; non‐GI). Median age at first symptom onset was 3 years (range 0.8–49). Median decimal BCVA in the better and worse‐seeing eye was 0.18 (range 0.05–0.83) and 0.08 (range light perception‐0.72), respectively. Spectral‐domain optical coherence tomography (SD‐OCT) showed cystoid maculopathy in 8 subjects; inner retinal thickening (n = 20), a well‐preserved (para)foveal outer retina (n = 7) or severe (para)foveal outer retinal atrophy (n = 14). All retinal layers were discernible in 13/21 patients (62%), with mild to moderate laminar disorganization in the others. Nanophthalmos was observed in 8 patients (36%). Full‐field stimulus testing (FST) provided a subjective outcome measure for retinal sensitivity in eyes with (nearly) extinguished ERG amplitudes. Conclusions Despite the generally severe course of CRB1‐RDs, symptom onset and central visual function are variable, even at advanced ages. Phenotypes may vary within the same family. Imaging and functional studies in a prospective longitudinal setting should clarify which endpoints may be most appropriate in a clinical trial.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Mary J. Schooneveld
- Department of Ophthalmology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
| | - Maria M. Genderen
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | | | - Herman E. Talsma
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
- Bartiméus Diagnostic Centre for complex visual disorders Zeist The Netherlands
| | - Ralph J. Florijn
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Jacoline B. Brink
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Frans P.M. Cremers
- Department of Human Genetics and Donders Institute for Brain Cognition and Behaviour Radboud University Medical Center Nijmegen The Netherlands
| | | | | | - Carel B. Hoyng
- Department of Ophthalmology Radboud University Medical Center Nijmegen The Netherlands
| | | | - Arthur A. Bergen
- Department of Clinical Genetics Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- The Netherlands Institute for Neuroscience (NIN‐KNAW) Amsterdam The Netherlands
| | - Camiel J.F. Boon
- Department of Ophthalmology Leiden University Medical Center Leiden The Netherlands
- Department of Ophthalmology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
15
|
Simunovic MP, Hess K, Avery N, Mammo Z. Threshold versus intensity functions in two-colour automated perimetry. Ophthalmic Physiol Opt 2020; 41:157-164. [PMID: 33063858 DOI: 10.1111/opo.12743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Two-colour computerised perimetry is a technique developed for assessing cone- and rod-function at fixed background luminances in retinal disease. However, the state of adaptation during testing is unknown but crucial in the interpretation of results. We therefore aimed to determine the adaptational state of rod- and cone-mechanisms in two-colour perimetry. METHODS Sensitivity to 480 nm (blue) and 640 nm (red) Goldmann size V targets was determined for 10 normal subjects aged 16 to 46 years at 17 locations in the central 60 degrees of the visual field under scotopic conditions and then from -1.5 log cd m-2 to 2 log cd m-2 (white background) in 0.5 log unit steps. Data were fitted with threshold versus intensity (tvi) functions of the form logT = logT0 + log ((A + A0 )/A0 )n . RESULTS No clear rod-cone break was observed for 640 nm stimuli. For 480 nm stimuli, transition from rod-detection to cone-detection occurred at mesopic illumination levels, where rod adaptation approached Weber behaviour. Cone detection mechanisms did not display Weber-like adaptation until the background luminance approached 1 log cd.m-2 . Diseases resulting in a "filter effect" - including disorders of the photoreceptors - are therefore predicted to affect sensitivity when rod function is probed with short-wavelength targets under scotopic conditions, but less so under mesopic conditions. Filter effects are similarly anticipated to affect cone function measured using long-wavelength targets under mesopic conditions (e.g., during microperimetry), but less so under photopic conditions. CONCLUSIONS Asymmetries in adaptation in automated two-colour perimetry are predicted to artefactually favour the detection of losses in rod sensitivity under scotopic conditions and cones under mesopic conditions.
Collapse
Affiliation(s)
- Matthew P Simunovic
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia.,Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| | - Kristina Hess
- Save Sight Institute, Discipline of Ophthalmology, University of Sydney, Sydney, Australia.,Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Neil Avery
- Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| | - Zaid Mammo
- Retinal Unit, Sydney Eye Hospital, Sydney, Australia
| |
Collapse
|
16
|
Talib M, Boon CJF. Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia Pac J Ophthalmol (Phila) 2020; 9:159-179. [PMID: 32511120 PMCID: PMC7299224 DOI: 10.1097/apo.0000000000000290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
: Retinal dystrophies (RDs) comprise relatively rare but devastating causes of progressive vision loss. They represent a spectrum of diseases with marked genetic and clinical heterogeneity. Mutations in the same gene may lead to different diagnoses, for example, retinitis pigmentosa or cone dystrophy. Conversely, mutations in different genes may lead to the same phenotype. The age at symptom onset, and the rate and characteristics of peripheral and central vision decline, may vary widely per disease group and even within families. For most RD cases, no effective treatment is currently available. However, preclinical studies and phase I/II/III gene therapy trials are ongoing for several RD subtypes, and recently the first retinal gene therapy has been approved by the US Food and Drug Administration for RPE65-associated RDs: voretigene neparvovec-rzyl (Luxturna). With the rapid advances in gene therapy studies, insight into the phenotypic spectrum and long-term disease course is crucial information for several RD types. The vast clinical heterogeneity presents another important challenge in the evaluation of potential efficacy in future treatment trials, and in establishing treatment candidacy criteria. This perspective describes these challenges, providing detailed clinical descriptions of several forms of RD that are caused by genes of interest for ongoing and future gene or cell-based therapy trials. Several ongoing and future treatment options will be described.
Collapse
Affiliation(s)
- Mays Talib
- Department of Ophthalmology, Leiden, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden, The Netherlands
- Department of Ophthalmology, Amsterdam UMC, Academic Medical Center, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
17
|
Cremers FPM, Lee W, Collin RWJ, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res 2020; 79:100861. [PMID: 32278709 PMCID: PMC7544654 DOI: 10.1016/j.preteyeres.2020.100861] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Abstract
The ABCA4 protein (then called a “rim protein”) was first
identified in 1978 in the rims and incisures of rod photoreceptors. The
corresponding gene, ABCA4, was cloned in 1997, and variants
were identified as the cause of autosomal recessive Stargardt disease (STGD1).
Over the next two decades, variation in ABCA4 has been
attributed to phenotypes other than the classically defined STGD1 or fundus
flavimaculatus, ranging from early onset and fast progressing cone-rod dystrophy
and retinitis pigmentosa-like phenotypes to very late onset cases of mostly mild
disease sometimes resembling, and confused with, age-related macular
degeneration. Similarly, analysis of the ABCA4 locus uncovered
a trove of genetic information, including >1200 disease-causing mutations
of varying severity, and of all types – missense, nonsense, small
deletions/insertions, and splicing affecting variants, of which many are located
deep-intronic. Altogether, this has greatly expanded our understanding of
complexity not only of the diseases caused by ABCA4 mutations,
but of all Mendelian diseases in general. This review provides an in depth
assessment of the cumulative knowledge of ABCA4-associated retinopathy –
clinical manifestations, genetic complexity, pathophysiology as well as current
and proposed therapeutic approaches.
Collapse
Affiliation(s)
- Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands.
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, PO Box 9104, 6500 HE, Nijmegen, the Netherlands
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, 10032, USA; Department of Pathology & Cell Biology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Cideciyan AV, Jacobson SG, Drack AV, Ho AC, Charng J, Garafalo AV, Roman AJ, Sumaroka A, Han IC, Hochstedler MD, Pfeifer WL, Sohn EH, Taiel M, Schwartz MR, Biasutto P, Wit WD, Cheetham ME, Adamson P, Rodman DM, Platenburg G, Tome MD, Balikova I, Nerinckx F, Zaeytijd JD, Van Cauwenbergh C, Leroy BP, Russell SR. Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nat Med 2018; 25:225-228. [PMID: 30559420 DOI: 10.1038/s41591-018-0295-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/02/2018] [Indexed: 11/09/2022]
Abstract
Photoreceptor ciliopathies constitute the most common molecular mechanism of the childhood blindness Leber congenital amaurosis. Ten patients with Leber congenital amaurosis carrying the c.2991+1655A>G allele in the ciliopathy gene centrosomal protein 290 (CEP290) were treated (ClinicalTrials.gov no. NCT03140969 ) with intravitreal injections of an antisense oligonucleotide to restore correct splicing. There were no serious adverse events, and vision improved at 3 months. The visual acuity of one exceptional responder improved from light perception to 20/400.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Allen C Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jason Charng
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian C Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Maria D Hochstedler
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wanda L Pfeifer
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | - Peter Adamson
- ProQR Therapeutics, Leiden, the Netherlands.,UCL Institute of Ophthalmology, London, UK
| | | | | | | | - Irina Balikova
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fanny Nerinckx
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | | | - Bart P Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Stephen R Russell
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
19
|
Abstract
PURPOSE To evaluate full-field sensitivity thresholds (FSTs) across a wide range of choroideremia (CHM) disease stages and to determine their applicability as functional endpoints for CHM clinical trials. METHODS Thirty CHM subjects (60 eyes) and 50 healthy controls (50 eyes) underwent FST testing under dark-adapted conditions to determine rod- and cone-mediated FSTs. Central retinal structure and function were assessed using fundus autofluorescence and microperimetry. Correlation and regression analyses were performed to compare FST responses with the residual area of retinal pigment epithelium in the peri- and parafoveal regions, as well as the mean and highest macular microperimetry sensitivity. RESULTS All patients with CHM had a baseline of 18 dB elevation in dark-adapted rod FSTs, including the least affected individuals. Further FST sensitivity loss was exponentially associated with decrease in the area of residual peri- and parafoveal retinal pigment epithelium, with precipitous loss of sensitivity noted for fundus autofluorescence areas less than 5 mm. Cone FSTs were comparable with controls, except for advanced stages of CHM. Full-field sensitivity threshold responses showed high correlation with both mean and highest macular microperimetry thresholds (P < 0.001). In some cases of absent macular fundus autofluorescence, the peripheral retina could contribute to detectable rod FST responses but with severely diminished cone-driven responses. CONCLUSION Full-field sensitivity threshold testing demonstrated a baseline level of rod dysfunction in CHM present in all rod photoreceptors. Further decline in FST responses correlated strongly with the extent of central retina structural and functional loss. Full-field sensitivity threshold allowed quantification of residual rod function in peripheral islands of vision, which cannot be reliably achieved with other conventional tests. As such, the FST can serve as a complimentary tool to guide patient selection and expand the eligibility criteria for current and future CHM clinical trials.
Collapse
|
20
|
Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology 2017; 125:432-443. [PMID: 29110946 PMCID: PMC5818267 DOI: 10.1016/j.ophtha.2017.09.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose To report the initial efficacy results of the Retina Implant Alpha AMS (Retina Implant AG, Reutlingen, Germany) for partial restoration of vision in end-stage retinitis pigmentosa (RP). Design Prospective, single-arm, investigator-sponsored interventional clinical trial. Within-participant control comprising residual vision with the retinal implant switched ON versus OFF in the implanted eye. Participants The Retina Implant Alpha AMS was implanted into the worse-seeing eye of 6 participants with end-stage RP and no useful perception of light vision. Eligibility criteria included previous normal vision for ≥12 years and no significant ocular or systemic comorbidity. Methods Vision assessments were scheduled at 1, 2, 3, 6, 9, and 12 months postimplantation. They comprised tabletop object recognition tasks, a self-assessment mobility questionnaire, and screen-based tests including Basic Light and Motion (BaLM), grating acuity, and greyscale contrast discrimination. A full-field stimulus test (FST) was also performed. Main Outcome Measures Improvement in activities of daily living, recognition tasks, and assessments of light perception with the implant ON compared with OFF. Results All 6 participants underwent successful implantation. Light perception and temporal resolution with the implant ON were achieved in all participants. Light localization was achieved with the implant ON in all but 1 participant (P4) in whom the chip was not functioning optimally because of a combination of iatrogenic intraoperative implant damage and incorrect implantation. Implant ON correct grating detections (which were at chance level with implant OFF) were recorded in the other 5 participants, ranging from 0.1 to 3.33 cycles/degree on 1 occasion. The ability to locate high-contrast tabletop objects not seen with the implant OFF was partially restored with the implant ON in all but 1 participant (P4). There were 2 incidents of conjunctival erosion and 1 inferotemporal macula-on retinal detachment, which were successfully repaired, and 2 incidents of inadvertent damage to the implant during surgery (P3 and P4). Conclusions The Alpha AMS subretinal implant improved visual performance in 5 of 6 participants and has exhibited ongoing function for up to 24 months. Although implantation surgery remains challenging, new developments such as OCT microscope guidance added refinements to the surgical technique.
Collapse
|
21
|
Collison FT, Park JC, Fishman GA, McAnany JJ, Stone EM. Full-Field Pupillary Light Responses, Luminance Thresholds, and Light Discomfort Thresholds in CEP290 Leber Congenital Amaurosis Patients. Invest Ophthalmol Vis Sci 2016; 56:7130-6. [PMID: 26529047 DOI: 10.1167/iovs.15-17467] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To investigate visual function in patients with CEP290 Leber congenital amaurosis (LCA-CEP290), using three full-field tests that can be performed by patients with poor fixation. METHODS Six patients (age range, 9-39 years) with LCA-CEP290 participated in the study. Stimuli for all three tests (full-field stimulus test [FST], pupillometry, and light discomfort threshold [LDT] testing) were generated by the Diagnosys ColorDome ganzfeld, by using achromatic stimuli as well as long- and short-wavelength stimuli to target rod and cone photoreceptors with all three tests and, in the latter two tests, melanopsin photoreceptors. RESULTS Dark-adapted FST thresholds in LCA-CEP290 patients were cone mediated and elevated between 4.8 and 6.2 log units above the normal achromatic threshold. The FST threshold was not measurable in one patient. The rod-mediated transient pupillary light reflex (PLR) was absent in all but the youngest patient, where unreliable responses precluded PLR quantification. Cone-mediated transient PLRs were subnormal in five patients, and absent in another. Sustained melanopsin-mediated PLRs were measurable in all patients. Full-field LDT thresholds were elevated compared to normal controls, and were lower for short-wavelengh than for long-wavelength stimuli. CONCLUSIONS The FST thresholds and transient PLRs were cone mediated in our cohort LCA-CEP290 patients. Rod-mediated PLRs were undetectable, whereas melanopsin-mediated sustained responses were detected in all patients, suggesting a relative preservation of inner-retina function. The LDT elevations for the patients are somewhat paradoxical, given their subjective perception of photoaversion. Relative aversion to short-wavelength light suggests influence from melanopsin on LDTs in these patients.
Collapse
Affiliation(s)
- Frederick T Collison
- The Pangere Center for Inherited Retinal Diseases The Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, Illinois, United States
| | - Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States
| | - Gerald A Fishman
- The Pangere Center for Inherited Retinal Diseases The Chicago Lighthouse for People Who Are Blind or Visually Impaired, Chicago, Illinois, United States 2Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicin
| | - J Jason McAnany
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, United States
| | - Edwin M Stone
- The University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Howard Hughes Medical Institute, Iowa City, Iowa, United States
| |
Collapse
|